Advertisement

Journal of Sol-Gel Science and Technology

, Volume 73, Issue 2, pp 484–500 | Cite as

Systematic review of catalyst nanoparticles synthesized by solution process: towards efficient carbon nanotube growth

  • Mohd Asyadi Azam
  • Nor Najihah Zulkapli
  • Zulhilmi Mohamed Nawi
  • Nik Mohamad Azren
Review Paper

Abstract

Nano-field research has been expanded rapidly since those tiny materials such as carbon nanotubes (CNTs), cobalt catalyst and iron catalyst can give huge impact to the application products with their extraordinary properties. The scientific discovery of these materials can be defined as a magic key to solve the raw materials shortage and unlock the limitation performance of the devices. CNTs have been found to be one of the new nanomaterials that can improve different kind of devices’ performance. CNT can be grown on the substrates with the presence of active metal catalysts. Since small metal catalyst particles (diameter <10 nm) are crucial in growing CNTs, the deposition method of metal catalyst on the substrates has been studied. The optional processes using solutions to produce catalyst nanoparticles will be discussed in this review. Sol–gel process along with spin coating is the most suitable deposition method with low cost of production and the easiness to control particle size deposited on the substrates.

Keywords

Carbon nanotube Metal catalyst Nanoparticles Sol–gel process Spin coating 

Notes

Acknowledgments

The authors gratefully acknowledged the financial support by the Ministry of Higher Education (MOE), Malaysia under the Exploratory Research Grant Scheme (ERGS) with research Grant Numbered E00032.

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56Google Scholar
  2. 2.
    Radushkevich LV, Lukyanovich VM (1952) On the carbon structure formed during thermal decomposition of carbon monoxide in the presence of iron (in Russian). Zh Fiz Khim 26:88Google Scholar
  3. 3.
    Tesner PA, Echeistova AI (1952) Investigation of the growth process of carbon-black particles by means of the electron microscope. Dokl Akad Nauk USSR 87:1029Google Scholar
  4. 4.
    Davis WR, Slawson RJ, Rigby GR (1953) An unusual form of carbon. Nature 171:756Google Scholar
  5. 5.
    Hofer LJE, Sterling E, McCartney JT (1955) Structure of the carbon deposited from carbon monoxide on iron, cobalt and nickel. J Phys Chem 59:1153Google Scholar
  6. 6.
    Walker PL, Rakszawski JF, Imperial GR (1959) Carbon formation from carbon monoxide–hydrogen mixtures over iron catalysts. J Phys Chem 63:133Google Scholar
  7. 7.
    Baird T, Fryer JR, Grant B (1971) Structure of fibrous carbon. Nature 233:329–330Google Scholar
  8. 8.
    Baird T, Fryer JR, Grant B (1974) Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 °C. Carbon 12:591Google Scholar
  9. 9.
    Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51Google Scholar
  10. 10.
    Baker RTK, Harris PS, Thomas RB, Waite RJ (1973) Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. Catalysis 30:86Google Scholar
  11. 11.
    Baker RTK, Waite RJ (1975) Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. Catalysis 37:101Google Scholar
  12. 12.
    Koyama T, Endo M, Onuma Y (1972) Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon. J Appl Phys 11:445Google Scholar
  13. 13.
    Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335Google Scholar
  14. 14.
    Baker RTK, Harris PS (1978) Chemistry and Physics of Carbon, vol 14. Marcel Dekker, New York, p 83Google Scholar
  15. 15.
    Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315Google Scholar
  16. 16.
    Endo M (1988) Grow carbon fibres in the vapour phase. ChemTech 18:568Google Scholar
  17. 17.
    Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Graphite fibers and filaments, vol 5. Springer, Berlin, p 382Google Scholar
  18. 18.
    Speck JS, Endo M, Dresselhaus MS (1989) J Cryst Growth 94:834Google Scholar
  19. 19.
    Kroto H (2001) Fullerene science—a most international endeavor. J Mol Graph Model 19:187–188Google Scholar
  20. 20.
    Azam MA, Isomura K, Fujiwara A, Shimoda T (2011) Towards realization of high performance electrochemical device using vertical-aligned single-walled carbon nanotubes. Glob Eng Technol Rev 1:1–8Google Scholar
  21. 21.
    Azam MA, Manaf NSA, Talib E, Bistamam MSA (2013) Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review. Ionics 19:1455–1476Google Scholar
  22. 22.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1 nm diameter. Nature 363:603Google Scholar
  23. 23.
    Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607Google Scholar
  24. 24.
    Yuan D, Ding L, Chu H, Feng Y, McNicholas TP, Liu J (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579Google Scholar
  25. 25.
    Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T et al (2004) Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett 385:298–303Google Scholar
  26. 26.
    Huang S, Cai X, Liu J (2003) Growth of millimeter long and strates. J Am Chem Soc 125:5636–5637Google Scholar
  27. 27.
    Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758Google Scholar
  28. 28.
    Homma Y, Kobayashi Y, Ogino T, Takagi D, Ito R, Jung YJ, Ajayan PM (2003) Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J Phys Chem B 107:12161–12164Google Scholar
  29. 29.
    Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Lucas AA (1996) Fe-catalyzed carbon nanotube formation. Carbon 34:1249–1257Google Scholar
  30. 30.
    Hernadi K, Fonseca A, Nagy JB, Bemaerts D, Fudala A, Lucas AA (1996) Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 17:416–423Google Scholar
  31. 31.
    He H, Gao C (2011) Synthesis of Fe3O4/Pt nanoparticles decorated carbon nanotubes and their use as magnetically recyclable catalysts. J Nanomater 2011:1–10Google Scholar
  32. 32.
    Esconjauregui S, Whelan CM, Maex K (2009) The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47:659–669Google Scholar
  33. 33.
    Ding L, Tselev A, Wang JY, Yuan DN, Chu HB, McNicholas TP, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805Google Scholar
  34. 34.
    Ding L, Yuan DN, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130:5428–5429Google Scholar
  35. 35.
    Feng YY, Zhang HB, Hou Y, McNicholas TP, Yuan DN, Yang SW, Ding L, Feng W, Liu J (2008) Room temperature purification of few-walled carbon nano-tubes with high yield. ACS Nano 2:1634–1638Google Scholar
  36. 36.
    Liu X, Baronian KHR, Downard AJ (2009) Direct growth of vertically aligned carbon nanotubes on a planar carbon substrate by thermal chemical vapour deposition. Carbon 47:500–506Google Scholar
  37. 37.
    Azam MA, Fujiwara A, Shimoda T (2011) Direct growth of vertically-aligned single-walled carbon nanotubes on conducting substrates using ethanol for electrochemical capacitor. J New Mater Electrochem Syst 14:173–178Google Scholar
  38. 38.
    Kim B, Chung H, Chu KS, Yoon HG, Lee CJ, Kim W (2010) Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties. Synth Met 160:584–587Google Scholar
  39. 39.
    Kim BW, Chung HG, Min BK, Kim HG, Kim W (2010) Electrochemical capacitors based on aligned carbon nanotubes directly synthesized on tantalum substrates. Bull Korean Chem Soc 31:3697–3702Google Scholar
  40. 40.
    Liu H, Zhang Y, Arato D, Li R, Mérel P, Sun X (2008) Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: critical effects of buffer layer. Surf Coat Technol 202:4114–4120Google Scholar
  41. 41.
    Lee CJ, Park J (2001) Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition. Carbon 39:1891–1896Google Scholar
  42. 42.
    Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474Google Scholar
  43. 43.
    Kumar M, Ando Y (2003) A simple method of producing aligned carbon nanotubes from an unconventional precursor—Champor. Chem Phys Lett 374:521–526Google Scholar
  44. 44.
    Colomer JF, Stephan C, Lefrant S, Van-Tendeloo G, Willems I, Konya Z, Fonseca A, Laurent C, Nagy JB (2000) Large-scale synthesis of single-wall carbon nanotubes by catalytic vapor deposition (CCVD) method. Chem Phys Lett 317:83–89Google Scholar
  45. 45.
    Ward J, Wei BQ, Ajayan PM (2003) Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane. Chem Phys Lett 376:717–725Google Scholar
  46. 46.
    Ago H, Nakamura K, Imamura S, Tsuji M (2004) Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO. Chem Phys Lett 391:308–313Google Scholar
  47. 47.
    Willems I, Konya Z, Colomer JF, Tendeloo GV, Nagaraju N, Fonseca A, Nagy JB (2000) Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett 317:71–76Google Scholar
  48. 48.
    Kumar M, Ando Y (2005) Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon 43:533–540Google Scholar
  49. 49.
    Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433Google Scholar
  50. 50.
    Hongo H, Yudasaka M, Ichihashi T, Nihey F, Iijima S (2002) Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates. Chem Phys Lett 361:349–354Google Scholar
  51. 51.
    Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364Google Scholar
  52. 52.
    Kumar M, Kakamu K, Okazaki T, Ando Y (2004) Field emission from camphor–pyrolyzed carbon nanotubes. Chem Phys Lett 385:161–165Google Scholar
  53. 53.
    Ding D, Wang J, Cao Z, Dai J (2003) Synthesis of carbon nanostructures on nanocrystalline Ni–Ni3P catalyst supported by SiC whiskers. Carbon 41:579–582Google Scholar
  54. 54.
    Murakami T, Sako T, Harima H, Kisoda K, Mitikami K, Isshiki T (2004) Raman study of SWNTs grown by CCVD method on SiC. Thin Solid Films 464–465:319–322Google Scholar
  55. 55.
    Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503Google Scholar
  56. 56.
    Mattevi C, Wirth CT, Hofmann S, Blume R, Cantoro M, Ducati C, Cepek C, Gericke AK, Milne S, Cudia CC, Dolafi S, Goldoni A, Schloegl R, Robertson J (2008) In-situ X-ray photoelectron spectroscopy study of catalyst–support interactions and growth of carbon nanotube forests. J Phys Chem C 112:12207–12213Google Scholar
  57. 57.
    Seah CM, Chai SP, Ichikawa S, Mohamed AR (2012) Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol–PEG colloidal solution. Carbon 50:960–967Google Scholar
  58. 58.
    Abdeen MA (2011) Synthesis of carbon nano tubes on silicon substrates using alcohol catalytic chemical vapor deposition. Mater Sci Appl 2:922–935Google Scholar
  59. 59.
    Barzegar HR, Nitze F, Sharifi T, Ramstedt M, Tai CW, Malolepszy A, Stobinski L, Wågberg T (2012) Simple dip-coating process for the synthesis of small diameter single-walled carbon nanotubes-effect of catalyst composition and catalyst particle size on chirality and diameter. J Phys Chem C Nanomater Interfaces 116:12232–12239Google Scholar
  60. 60.
    Azam MA, Abd Rashid MW, Isomura K, Fujiwara A, Shimoda T (2012) X-ray and morphological characterization of Al–O thin films used for vertically aligned single-walled carbon nanotube growth. Adv Mater Res 620:213–218Google Scholar
  61. 61.
    Azam MA, Fujiwara A, Shimoda T (2011) Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol. Appl Surf Sci 258:873–882Google Scholar
  62. 62.
    See CH, Harris AT (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res 46:997–1012Google Scholar
  63. 63.
    Journet C, Bernier P (1998) Production of carbon nanotubes. Appl Phys A 67:1–9Google Scholar
  64. 64.
    Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222Google Scholar
  65. 65.
    Dupuis A (2005) The catalyst in the CCVD of carbon nanotubes—a review. Prog Mater Sci 50:929–961Google Scholar
  66. 66.
    Moshkalev SA, Verissimo C (2007) Nucleation and growth of carbon nanotubes in catalytic chemical vapor deposition. J Appl Phys 102:044303Google Scholar
  67. 67.
    Awasthi K, Srivastava A, Srivastava ON (2005) Synthesis of carbon nanotubes. J Nanosci Nanotechnol 5:1616–1636Google Scholar
  68. 68.
    Saengmee-Anupharb S, Thongpang S, Bertheir ESP, SIngjai P (2010) Growth of vertically aligned carbon nanotubes on silicon using a sparked iron-cobalt catalyst. ISRN Nanotechnol 2011:1–8Google Scholar
  69. 69.
    Tessonnier JP, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. ChemSusChem 4:824–847Google Scholar
  70. 70.
    Adams T, Duong B, Seraphin S (2012) Effects of catalyst components on carbon nanotubes grown by chemical vapor deposition. J Undergrad Res 1–8Google Scholar
  71. 71.
    Lindsay SM (2010) Introduction to nanoscience. Oxford University Press, New York, pp 178–202Google Scholar
  72. 72.
    Seal S (2008) Functional nanostructures: processing, characterization, and applications. In: Nanostructure science and technology. Springer, New York, pp 504–511Google Scholar
  73. 73.
    Edelstein AS, Cammaratra RC (1996) Nanomaterials: synthesis, properties and applications. CRS Press, 2nd edn. Taylor & Francis Group, New York, pp 13–68Google Scholar
  74. 74.
    Sen R, Das S, Das K (2011) Combustion and ball milled synthesis of rare earth nano-sized ceria powder. Mater Sci Appl 2:416–420Google Scholar
  75. 75.
    Sharma A (2013) Effect of synthesis routes on microstructure of nanocrystalline cerium oxide powder. Materials Sciences and Applications 4:504–508Google Scholar
  76. 76.
    Lu K (2012) Nanoparticulate materials: synthesis, characterization, and processing. John Wiley & Sons Inc, New Jersey, pp 181–183Google Scholar
  77. 77.
    Koch CC, Youssef KM, Scattergood RO (2008) Mechanical properties of nanocrystalline materials produced by in situ. Mater Sci Forum 579:15–28Google Scholar
  78. 78.
    Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  79. 79.
    Hecht C, Abdali A, Dreier T, Schulz C (2011) Gas-temperature imaging in a microwave-plasma nanoparticle-synthesis reactor using multi-line NO-LIF thermometry. International journal of research in physical chemistry and chemical physics 225:1225–1235Google Scholar
  80. 80.
    Ramakrishanan P (2007) Powder metallurgy. In: New age international, 1st Edn. Bombay, India, p 46Google Scholar
  81. 81.
    Riedel R, Chen IW (2011) Ceramics science and technology, synthesis and processing. John Wiley & Sons Inc, New Jersey, pp 78–79Google Scholar
  82. 82.
    Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2:127–146Google Scholar
  83. 83.
    Cao G, Wang Y (2004) Nanostructures and nanomaterials: synthesis, properties and applications, 2nd Edn. Imperial College Press, World Scientific, pp 76–81Google Scholar
  84. 84.
    Edel JB, Krishnadasan S, Torvilla J, Compte RV, John C (2003) Controlled synthesis of compound semiconductor nanoparticles using microfluidic reactors. In: Transducers, solid-state sensors, actuators and microsystems, 12th International Conference, vol 2. IEEE, Boston, pp 1730–1733Google Scholar
  85. 85.
    Schmid G (2004) Nanoparticles. WILEY-VCH Verlag GmbH & Co. KGaA, Germany, pp 191–192Google Scholar
  86. 86.
    Anzlovar A (2011) Polyol mediated nano size zinc oxide and nanocomposites with poly(methyl methacrylate). Express Polym Lett 5:604–619Google Scholar
  87. 87.
    Roy R (1994) Accelerating the kinetics of low-temperature inorganic syntheses. J Solid State Chem 111:11–17Google Scholar
  88. 88.
    Suchanek WL, Riman RE (2006) Hydrothermal synthesis of advanced ceramic powders. Adv Sci Technol 45:184–193Google Scholar
  89. 89.
    Merzhanov AG (1993) Theory and practice of SHS: worldwide state of the art and the newest results. Int J Self-Propag High Temp Synth 2:113–158Google Scholar
  90. 90.
    Sathiwitayakul T, Newton E, Parkin IP, Kuznetsov M, Binions R (2013) Ferrite materials for gas sensing applications. In: Sensors, 2013 IEEE pp 1–4Google Scholar
  91. 91.
    Ramakrishnan S (2005) Nanostructure polymers. In: The Chemistry of nanomaterials. Weinheim, Germany, pp 476–541Google Scholar
  92. 92.
    Murakami Y, Yamakita S, Okubo T, Maruyama S (2003) Single-walled carbon nanotubes catalytically grown from mesoporous silica thin film. Chem Phys Lett 375:393–398Google Scholar
  93. 93.
    Murakami Y, Miyauchi Y, Chiashi S, Maruyama S (2003) Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem Phys Lett 377:49–54Google Scholar
  94. 94.
    Hu M, Murakami Y, Ogura M, Maruyama S, Okubo T (2004) Morphology and chemical state of Co–Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates. J Catal 225:230–239Google Scholar
  95. 95.
    Seah CM, Chai SP, Ichikawa S, Mohamed AR (2013) Control of iron nanoparticle size by manipulating PEG–ethanol colloidal solutions and spin-coating parameters for the growth of single-walled carbon nanotubes. Particuology 11:394–400Google Scholar
  96. 96.
    Dündar-Tekkaya ED, Karatepe N (2011) Production of carbon nanotubes by iron catalyst. World Acad Sci Eng Technol 55:225–231Google Scholar
  97. 97.
    Trépanier M, Dalai AK, Abatzoglou N (2010) Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions. Appl Catal A 374:79–86Google Scholar
  98. 98.
    Terrado E, Redrado M, Muñoz E, Maser WK, Benito AM, Martínez MT (2006) Carbon nanotube growth on cobalt-sprayed substrates by thermal CVD. Mater Sci Eng C 26:1185–1188Google Scholar
  99. 99.
    Yan X, Liu C (2013) Diamond and related materials effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst. Diam Relat Mater 31:50–57Google Scholar
  100. 100.
    Chen CM, Dai YM, Huang JG, Jehng JM (2006) Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44:1808–1820Google Scholar
  101. 101.
    Triantafyllidis KS, Karakoulia SA, Gournis D, Delimitis A, Nalbandian L, Maccallini E, Rudolf P (2008) Formation of carbon nanotubes on iron/cobalt oxides supported on zeolite-Y: effect of zeolite textural properties and particle morphology. Microporous Mesoporous Mater 110:128–140Google Scholar
  102. 102.
    Unalan HE, Chhowalla M (2005) Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology 16:2153Google Scholar
  103. 103.
    Patil V (2012) Synthesis and characterization of Co3O4 thin film. Soft Nanosci Lett 2:1–7Google Scholar
  104. 104.
    Xiang R, Einarsson E, Murakami Y, Shiomi J, Chiashi S, Tang Z, Maruyama S (2012) Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 6:7472–7479Google Scholar
  105. 105.
    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872–15884Google Scholar
  106. 106.
    Chopra N, McWhinney HG, Shi W (2011) Chemical changes in carbon nanotube-nickel/nickel oxide core/shell nanoparticle heterostructures treated at high temperatures. Mater Charact 62:635–641Google Scholar
  107. 107.
    Cheng Q, Ma J, Zhang H, Shinya N, Qin LC, Tang J (2010) Electrodeposition of MnO2 on carbon nanotube thin films as flexible electrodes for supercapacitors. Trans Mater Res Soc Jpn 35:369–372Google Scholar
  108. 108.
    Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501Google Scholar
  109. 109.
    Luurtsema GA (1997) Spin coating for rectangular substrates. Dissertation, University Of California, BerkeleyGoogle Scholar
  110. 110.
    Shivaraj BW, Murthy HN, Krishna M, Sharma SC (2013) Investigation of influence of spin coating parameters on the morphology of ZnO thin films by taguchi method. Int J Thin Film Sci Technol 2:143–154Google Scholar
  111. 111.
    Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38:2039–2045Google Scholar
  112. 112.
    Bornside DE, Macosko CW, Scriven LE (1987) On the modeling of spin coating. J Imaging Technol 13:122–130Google Scholar
  113. 113.
    Huh Y, Green ML, Kim YH, Lee JY, Lee CJ (2005) Control of carbon nanotube growth using cobalt nanoparticles as catalyst. Appl Surf Sci 249:145–150Google Scholar
  114. 114.
    Huang YY, Chou KS (2003) Studies on the spin coating process of silica films. Ceram Int 29:485–493Google Scholar
  115. 115.
    Landau LD, Levich BG (1942) Acta physiochim. URSS 17:42–54Google Scholar
  116. 116.
    Raoufi D, Raoufi T (2009) The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Appl Surf Sci 255:5812–5817Google Scholar
  117. 117.
    Grimsley LF, Harris EL (2012) Patty’s industrial hygiene and toxicology. John Wiley & Sons, Inc: Wiley online library, New Jersey, pp 637Google Scholar
  118. 118.
    Fu Y, Kraus L, Zaki MI, Kappenstein C, Tesche B, Knozinger H (1988) Potassium-modified osmium/alumina catalysts. J Mol Catal 44:295–311Google Scholar
  119. 119.
    Seah CM, Chai SP, Mohamed AR (2011) Synthesis of aligned carbon nanotubes. Carbon 49:4613–4635Google Scholar
  120. 120.
    Lu YP, Li ST, Zhu RF, Li MS, Lei TQ (2003) Formation of ultrafine particles in heat treated plasma-sprayed hydroxyapatite coatings. Surf Coat Technol 165:65–70Google Scholar
  121. 121.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670Google Scholar
  122. 122.
    Liao XZ, Serquis A, Jia QX, Peterson DE, Zhu YT, Xu HF (2003) Effect of catalyst composition on carbon nanotube growth. Appl Phys Lett 82:2694–2696Google Scholar
  123. 123.
    Moshkalyov SA, Moreau ALD, Guttiérrez HR, Cotta MA, Swart JW (2004) Carbon nanotubes growth by chemical vapor deposition using thin film nickel catalyst. Mater Sci Eng B 112:147–153Google Scholar
  124. 124.
    Wei L, Wang B, Liu D, Li LJ, Yang Y, Chen Y (2009) In situ formation of cobalt nanoclusters in sol–gel silica films for single-walled carbon nanotube growth. NANO 4:99–106Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mohd Asyadi Azam
    • 1
  • Nor Najihah Zulkapli
    • 1
  • Zulhilmi Mohamed Nawi
    • 1
  • Nik Mohamad Azren
    • 1
  1. 1.Carbon Research Technology Research Group, Faculty of Manufacturing EngineeringUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia

Personalised recommendations