Journal of Sol-Gel Science and Technology

, Volume 73, Issue 3, pp 641–646 | Cite as

Polymer-ceramic nanocomposites for high energy density applications

  • Shiva Adireddy
  • Venkata S. Puli
  • Tiffany J. Lou
  • Ravinder Elupula
  • S. C. Sklare
  • Brian C. Riggs
  • Douglas B. Chrisey
Original Paper


Next-generation capacitive energy storage requires novel materials with engineered nano-architectures to compete with conventional methods for energy storage. While current materials and processing strategies produce capacitors with enhanced dielectric permittivity, their breakdown strengths are low. The new fabrication route described in this paper provides flexible, free-standing nanocomposite films with high dielectric permittivity and high breakdown strength. Monodispersed ceramic fillers [BaTiO3, Ba1−xCaxTiO3 (X = 0.3 ± 0.05), and BaZr1−xTixO3 (X = 0.2 ± 0.05)] were synthesized via solvothermal method. Surface-exchanged nanoparticles were combined with polyvinylidene fluoride (PVDF) to fabricate stable polymer-ceramic blends. The PVDF/ceramic nanocomposites resulting from this approach have high dielectric permittivity, low loss tangent, and high electric breakdown strength. The calculated maximum energy densities for the BaTiO3, Ba1–xCaxTiO3 [X = 0.3 ± 0.05], and BaZr1–xTixO3 [X = 0.2 ± 0.05] nanocomposite films are 3.24, 4.72, and 7.74 J cm−3 respectively. This a result of the interplay between the dependencies of permittivity and breakdown strength on volume fraction. It is proposed that the interaction, enhanced by functionalized surface hydroxyl groups, between ceramic and polymer components is the main reason for the improved dielectric properties. This approach is versatile and is readily applicable to other combinations of polymer-ceramics composites so that cooperative properties can be exploited.


Ceramics Polymeric materials Energy storage Nanoparticles Dielectrics Dielectric breakdown 



This work was supported by the NSF-EFRI Award # 1038272 Grant. This work was supported in part by the Tulane/Xavier Center for Bioenvironmental Research.


  1. 1.
    Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76:3804CrossRefGoogle Scholar
  2. 2.
    Chu BJ et al (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334CrossRefGoogle Scholar
  3. 3.
    Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15:1625CrossRefGoogle Scholar
  4. 4.
    Puli VS, Pradhan DK, Riggs BC, Chrisey DB, Katiyar RS (2014) Investigations on structure, ferroelectric, piezoelectric and energy storage properties of barium calcium titanate (BCT) ceramics. J Alloy Compd 584:369CrossRefGoogle Scholar
  5. 5.
    Lai MB et al (2013) Effects and mechanism of graft modification on the dielectric performance of polymer-matrix composites. Compos Sci Technol 89:127CrossRefGoogle Scholar
  6. 6.
    Nguyen H, Navid A, Pilon L (2010) Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Appl Therm Eng 30:2127CrossRefGoogle Scholar
  7. 7.
    Polizos G, Tomer V, Manias E, Randall CA (2010) Epoxy-based nanocomposites for electrical energy storage. II: nanocomposites with nanofillers of reactive montmorillonite covalently-bonded with barium titanate. J Appl Phys 108:074117Google Scholar
  8. 8.
    Xia WM, Xu Z, Wen F, Zhang ZC (2012) Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram Int 38:1071CrossRefGoogle Scholar
  9. 9.
    Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci Part B Polym Phys 49:1421CrossRefGoogle Scholar
  10. 10.
    Wu W, Huang XY, Li ST, Jiang PK, Toshikatsu T (2012) Novel three-dimensional zinc oxide superstructures for high dielectric constant polymer composites capable of withstanding high electric field. J Phys Chem C 116:24887CrossRefGoogle Scholar
  11. 11.
    Li JJ et al (2009) Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 21:217CrossRefGoogle Scholar
  12. 12.
    Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans Plasma Sci 30:1939CrossRefGoogle Scholar
  13. 13.
    Wang Y, Zhou X, Chen Q, Chu BJ, Zhang QM (2010) Recent development of high energy density polymers for dielectric capacitors. IEEE Trans Dielectr Electr Insul 17:1036CrossRefGoogle Scholar
  14. 14.
    Zhang QM et al (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419:284CrossRefGoogle Scholar
  15. 15.
    Zhou X et al (2009) Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl Phys Lett 94:162901Google Scholar
  16. 16.
    Dalle Vacche S et al (2014) Effect of silane coupling agent on the morphology, structure, and properties of poly(vinylidene fluoride-trifluoroethylene)/BaTiO3 composites. J Mater Sci 49:4552CrossRefGoogle Scholar
  17. 17.
    Liu SH, Zhai JW, Wang JW, Xue SX, Zhang WQ (2014) Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl Mater Interfaces 6:1533CrossRefGoogle Scholar
  18. 18.
    Xie LY, Huang XY, Yang K, Li ST, Jiang PK (2014) “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. J Mater Chem A 2:5244CrossRefGoogle Scholar
  19. 19.
    Cho WS (1998) Structural evolution and characterization of BaTiO3 nanoparticles synthesized from polymeric precursor. J Phys Chem Solids 59:659CrossRefGoogle Scholar
  20. 20.
    Smith MB et al (2008) Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J Am Chem Soc 130:6955CrossRefGoogle Scholar
  21. 21.
    Kim P et al (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581CrossRefGoogle Scholar
  22. 22.
    Niederberger M, Garnweitner G, Pinna N, Antonietti M (2004) Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba, Sr)TiO3 nanoparticles via a mechanism involving C–C bond formation. J Am Chem Soc 126:9120CrossRefGoogle Scholar
  23. 23.
    Adireddy S, Lin CK, Cao BB, Zhou WL, Caruntu G (2010) Solution-based growth of monodisperse cube-like BaTiO3 colloidal nanocrystals. Chem Mater 22:1946CrossRefGoogle Scholar
  24. 24.
    Mohanty D et al (2012) Synthesis and piezoelectric response of cubic and spherical LiNbO3 nanocrystals. RSC Adv 2:1913CrossRefGoogle Scholar
  25. 25.
    Li CC, Chang SJ, Lee JT, Liao WS (2010) Efficient hydroxylation of BaTiO3 nanoparticles by using hydrogen peroxide. Coll Surf A—Physicochem Eng Asp 361:143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shiva Adireddy
    • 1
  • Venkata S. Puli
    • 1
  • Tiffany J. Lou
    • 1
  • Ravinder Elupula
    • 2
  • S. C. Sklare
    • 1
  • Brian C. Riggs
    • 1
  • Douglas B. Chrisey
    • 1
  1. 1.Department of Physics and Engineering PhysicsTulane UniversityNew OrleansUSA
  2. 2.Department of ChemistryTulane UniversityNew OrleansUSA

Personalised recommendations