Skip to main content
Log in

Effect of Zn2+ ions on the structure, morphology and optical properties of CaWO4 microcrystals

  • Brief Communication
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effect of zinc ions (Zn2+) on the structure, morphology and optical properties of (Ca1−x Zn x )WO4 microcrystals with (x = 0, 0.01, 0.02, and 0.03) obtained by the microwave-hydrothermal method at 170 °C for 1 h is reported in this letter. These microcrystals were characterized by X-ray diffraction (XRD), Rietveld refinement, energy dispersive X-rays spectroscopy (EDXS) and field emission scanning electron microscopy (FE-SEM) images. The optical properties were investigated by ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data indicated that all the (Ca1−x Zn x )WO4 microcrystals present a tetragonal structure and a reduction of lattice parameters and unit cell volume occurs with the increase of Zn2+. EDXS data confirms that the elemental chemical composition was achieved for (Ca1−x Zn x )WO4 microcrystals. FE-SEM images showed that the replacement of Ca2+ by the Zn2+ promotes a reduction of average crystals size and considerable changes in crystal shape starting from dumbbell-like to decorative ball-like (Ca1−x Zn x )WO4 microcrystals. UV–Vis spectra evidenced a small increase in optical band gap values (from 5.72 to 5.76 eV). Finally, PL emission of (Ca1−x Zn x )WO4 microcrystals was improved until x = 0.02 due to the presence of defects at medium range and new intermediate electronic levels in the band gap associated to the Zn2+ content.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Chen Y, Moon BK, Choi BC, Jeong JH, Yang HK (2013) J Am Ceram Soc 96:3596–3602

    Article  Google Scholar 

  2. Gong Q, Qian X, Ma X, Zhu Z (2006) Crys Growth Des 6:1821–1825

    Article  Google Scholar 

  3. Zhang J, Yang Y, Zhang Z, Wang P, Wang X (2014) Adv Mater 26:1071–1075

    Article  Google Scholar 

  4. Chen Z, Gong Q, Zhu J, Yuan YP, Qian LW, Qian XF (2009) Mater Res Bull 44:45–50

    Article  Google Scholar 

  5. Jiang X, Ma J, Yao Y, Sun Y, Liu Z, Ren Y, Liu J, Lin B (2009) Ceram Int 24:3525–3528

    Article  Google Scholar 

  6. Li N, Gao F, Hou L, Gao D (2010) J Phys Chem C 114:16114–16121

    Article  Google Scholar 

  7. Almeida MAP, Cavalcante LS, Siu Liu M, Varela JA, Longo E (2012) J Inorg Organomet Polym 22:264–271

    Article  Google Scholar 

  8. Zhang J, Wang Y, Li S, Wang X, Huang F, Xie A, Shen Y (2011) CrystEngComm 13:5744–5750

    Article  Google Scholar 

  9. Kang SJ, Hwang YS, Park JM, Chae GH, Kim S, Cheon JK (2013) J Korean Phys Soc 63:1466–1472

    Article  Google Scholar 

  10. Kalpakli AO, Ilhan S, Kahruman C, Yusufoglu I (2013) Can Metall Q 52:348–357

    Article  Google Scholar 

  11. Xu W, Gao X, Zheng L, Wang P, Zhang Z, Cao W (2012) Appl Phys Express 5:072201–072203

    Article  Google Scholar 

  12. Lin HL, Cao J, Luo BD, Ju TY, Chen SF (2010) Imaging Sci Photochem 28:368–375

    Google Scholar 

  13. Baibekov EI, Zverev DG, Kurkin IN, Rodionov AA, Malkin BZ, Barbara B (2014) Opt Spectrosc 116:661–666

    Article  Google Scholar 

  14. Kim JN, Shin JW, Oh KM, Lee YK, Park SK, Park JK, Nam SH (2013) J Nanosci Nanotechnol 13:3455–3458

    Article  Google Scholar 

  15. Kuzmin A, Anspoks A, Kalinko A, Timoshenko J (2013) J Phys Conf Ser 430:012109–012112

    Article  Google Scholar 

  16. Rajagopala S, Bekenevb VL, Nataraja D, Mangalarajc D, Khyzhun OYu (2010) J Alloys Compd 496:61–68

    Article  Google Scholar 

  17. Kuzmin A, Purans J (2001) Radiat Meas 33:583–586

    Article  Google Scholar 

  18. Schofield PF, Redern SAT (1992) J Phys Condens Matter 5:375–388

    Article  Google Scholar 

  19. Sadegh M, Badiei A (2014) Res Chem Intermed 40:2007–2014

    Article  Google Scholar 

  20. Khobragade N, Sinha E, Rout SK, Kar M (2013) Ceram Int 39:9627–9635

    Article  Google Scholar 

  21. Cho SW (2013) Bull Korean Chem Soc 34:2769–2773

    Article  Google Scholar 

  22. Basu S, Naidu BS, Viswanadh B, Sudarsan V, Jha SN, Bhattacharyya D, Vatsa RK (2014) RSC Adv 4:15606–15612

    Article  Google Scholar 

  23. Sivers MV, Ciemniak C, Erb A, Feilitzsch FV, Gütlein A, Lanfranchi JC, Lepelmeier J, Münster A, Potzel W, Roth S, Strauss R, Thalhammer U, Wawoczny S, Willers M, Zöller A (2012) Opt Mater 34:1843–1848

    Article  Google Scholar 

  24. Yu J, Huang K, Yuan L, Feng S (2014) New J Chem 38:1441–1445

    Article  Google Scholar 

  25. Du C, Lang F, Su Y, Liu Z (2013) J Colloid Interface Sci 394:94–99

    Article  Google Scholar 

  26. Hu W, Tong W, Li L, Zheng J, Li G (2011) Phys Chem Chem Phys 13:11634–11643

    Article  Google Scholar 

  27. Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Siu Li M (2012) CrystEngComm 14:853–868

    Article  Google Scholar 

  28. Bubank RD (1965) Acta Cryst 18:88–97

    Article  Google Scholar 

  29. Rietveld HM (1969) J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  30. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS), Los. Alamos National Laboratory Report LAUR 86–748

  31. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  32. Penn RL, Banfield JF (1998) Am Mineral 83:1077–1082

    Google Scholar 

  33. Cavalcante LS, Sczancoski JC, Tranquilin RL, Varela JA, Longo E, Longo E (2009) Particuology 7:353–362

    Article  Google Scholar 

  34. Liu S, Tian S, Xing R (2011) CrystEngComm 13:7258–7261

    Article  Google Scholar 

  35. Wang WS, Zhen L, Xu CY, Yang L, Shao WZ (2008) J Phys Chem C 112:19390–19398

    Article  Google Scholar 

  36. Zheng J, Huang F, Yin S, Wang Y, Lin Z, Wu X, Zhao Y (2010) J Am Chem Soc 132:9528–9530

    Article  Google Scholar 

  37. Tian Y, Chen B, Yu H, Hu R, Li X, Sun J, Cheng L, Zhong H, Zhang J, Zheng Y, Yu T, Huang L (2011) J Colloid Interface Sci 360:586–592

    Article  Google Scholar 

  38. Kubelka P, Munk-Aussig F (1931) Zeit Für Tech Physik 12:593–601

    Google Scholar 

  39. Gracia L, Longo VM, Cavalcante LS, Beltrán A, Avansi W, Li MS, Mastelaro VR, Varela JA, Longo E, Andrés J (2011) J Appl Phys 110:043501–043511

    Article  Google Scholar 

  40. Yang Y, Wang X, Liu B (2014) NANO 9:1450008–1450013

    Article  Google Scholar 

  41. Li Y, Wang Z, Sun L, Wang Z, Wang S, Liu X, Wang Y (2014) Mater Res Bull 50:36–41

    Article  Google Scholar 

  42. Boyle TJ, Yang P, Hattar K, Hernandez-Sanchez BA, Neville ML, Hoppe S (2014) Chem Mater 26:965–975

    Article  Google Scholar 

Download references

Acknowledgments

The Brazilian authors acknowledge the financial support of the Brazilian research financing institutions: CNPq (479644/2012-8; 304531/2013-8), FAPESP (12/18597-0; 09/50303-4; 2013/07296-2), and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Cavalcante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M.A.P., Lima, J.R.O., Morila-Santos, C. et al. Effect of Zn2+ ions on the structure, morphology and optical properties of CaWO4 microcrystals. J Sol-Gel Sci Technol 72, 648–654 (2014). https://doi.org/10.1007/s10971-014-3550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3550-y

Keywords

Navigation