Journal of Sol-Gel Science and Technology

, Volume 73, Issue 2, pp 358–364 | Cite as

Facile fabrication of In2O3/Bi2WO6 heterostructured microbelts with enhanced photocatalytic activity

  • Xiaona Liu
  • Qifang Lu
  • Cuiqing Wang
  • Chaofeng Zhu
  • Suwen Liu
Original Paper


The In2O3/Bi2WO6 heterostructured microbelts with the diameters around 500 nm–1 μm have been fabricated by electrospinning combined with the annealing process. The as-prepared microbelts were characterized by thermogravimetric and differential scanning calorimetry, fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope and transmission electron microscope. It was found that the In2O3/Bi2WO6 microbelts reported here showed the well-defined morphology. Additionally, In2O3/Bi2WO6 heterostructured microbelts exhibit the enhanced photocatalytic activity under the simulated sunlight irradiation compared with the pure Bi2WO6 microbelts.


In2O3/Bi2WO6 Heterostructured Microbelts Electrospinning 



This work was supported by the National Natural Science Foundation of China (Grant No. 51172133), Natural Science Foundation of Shandong Province (Grant No. ZR2013BQ001), Project of Independent Innovation of University Institute of Jinan (Grant No. 201311034) and Shandong Province Higher Educational Science and Technology Program (Grant No. J13LA01). The authors also thank the Analytical Center of Qilu University of Technology for technological support.

Supplementary material

10971_2014_3541_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1627 kb)


  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782–796CrossRefGoogle Scholar
  3. 3.
    Yang MQ, Xu YJ (2013) Phys Chem Chem Phys 15:19102–19118CrossRefGoogle Scholar
  4. 4.
    Zhang N, Zhang Y, Xu YJ (2012) Nanoscale 4:5792–5813CrossRefGoogle Scholar
  5. 5.
    Zhang N, Liu S, Xu YJ (2012) Nanoscale 4:2227–2238CrossRefGoogle Scholar
  6. 6.
    Wen F, Li C (2013) Acc Chem Res 46:2355–2364CrossRefGoogle Scholar
  7. 7.
    Guo YD, Zhang GK, Liu J, Zhang YL (2013) RSC Adv 3:2963–2970CrossRefGoogle Scholar
  8. 8.
    Shang M, Wang WZ, Ren J, Sun SM, Wang L, Zhang L (2009) J Mater Chem 19:6213–6218CrossRefGoogle Scholar
  9. 9.
    Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, Glasscock JA (2006) Int J Hydrogen Energy 31:1999–2017CrossRefGoogle Scholar
  10. 10.
    Li Y, Wu WJ, Wu MZ, Dai P, Zhang LL, Sun ZQ, Li G, Liu XS, Chen XS, Zheng XW (2014) Mater Res Bull 55:121–125CrossRefGoogle Scholar
  11. 11.
    Huang HW, Wang SB, Tian N, Zhang YH (2014) RSC Adv 4:5561–5567CrossRefGoogle Scholar
  12. 12.
    Sun ZH, Guo JJ, Zhu SM, Mao L, Ma J, Zhang D (2014) Nanoscale 6:2186–2193CrossRefGoogle Scholar
  13. 13.
    Zhang L, Wang H, Chen Z, Wong PK, Liu J (2011) Appl Catal B 106:1–13Google Scholar
  14. 14.
    Chen SH, Yin Z, Luo SL, Li XJ, Yang LX, Deng F (2012) Appl Surf Sci 259:7–12CrossRefGoogle Scholar
  15. 15.
    Liu SJ, Hou YF, Zheng SL, Zhang Y, Wang Y (2013) CrystEngComm 15:4124–4130CrossRefGoogle Scholar
  16. 16.
    Wang X, Chang L, Wang J, Song N, Liu H, Wan X (2013) Appl Surf Sci 270:685–689CrossRefGoogle Scholar
  17. 17.
    Zhang L, Zhu Y (2012) Catal Sci Technol 2:694–706CrossRefGoogle Scholar
  18. 18.
    Feng Y, Wu Q, Zhang G, Sun Y (2012) Prog Chem 24:2124–2131Google Scholar
  19. 19.
    Cao J, Xu B, Luo B, Lin H, Chen S (2011) Catal Commun 13:63–68CrossRefGoogle Scholar
  20. 20.
    Ye LQ, Liu JY, Jiang Z, Peng TY, Zan L (2013) Appl Catal B 142:1–7Google Scholar
  21. 21.
    Yu TH, Cheng WY, Chao KJ, Lu SY (2013) Nanoscale 5:7356–7360CrossRefGoogle Scholar
  22. 22.
    Peng Y, Yan M, Chen QG, Fan CM, Zhou HY, Xu AW (2014) J Mater Chem A 2:8517–8524CrossRefGoogle Scholar
  23. 23.
    Hou YF, Liu SJ, Zhang JH, Cheng X, Wang Y (2014) Dalton Trans 43:1025–1031CrossRefGoogle Scholar
  24. 24.
    Yang WJ, Ma B, Wang WC, Wen YW, Zeng DW, Shan B (2013) Phys Chem Chem Phys 15:19387–19394CrossRefGoogle Scholar
  25. 25.
    Li YL, Liu YM, Wang JS, Uchaker E, Zhang QF, Sun SB, Huang YX, Li JY, Cao GZ (2013) J Mater Chem A 1:7949–7956CrossRefGoogle Scholar
  26. 26.
    Zhao G, Liu SW, Lu QF, Shi M, Song LJ (2011) Springer 22: 621–631Google Scholar
  27. 27.
    Zhang YL, Li JY, Li Q, Zhu L, Liu XD, Zhong XH, Meng J, Cao XQ (2007) Scripta Mater 56:409–412Google Scholar
  28. 28.
    Zhao F, Lu QF, Liu SW, Wang CQ (2014) J Sol–Gel Sci Technol 69:357–363CrossRefGoogle Scholar
  29. 29.
    Zhang ZY, Li XH, Wang CH, Wei LM, Liu YC, Shao CL (2009) J Phys Chem C 113:19397–19403CrossRefGoogle Scholar
  30. 30.
    Zhao G, Liu SW, Lu QF, Song LJ (2012) Ind Eng Chem Res 51:10307–10312CrossRefGoogle Scholar
  31. 31.
    He GH, He GL, Li AJ, Li X, Wang XJ, Fang YP, Xu YH (2014) J Mol Catal A Chem 385:106–111CrossRefGoogle Scholar
  32. 32.
    Guo W, Yang YX, Guo YN, Jia YQ, Liu HB, Guo YH (2014) Phys Chem Chem Phys 16:2705–2714CrossRefGoogle Scholar
  33. 33.
    Zhao G, Liu SW, Lu QF, Xu FX, Sun HY (2013) J Alloys Comps 578:12–16CrossRefGoogle Scholar
  34. 34.
    Lu QF, Wang CQ, Liu SW, Ren MM (2011) Mater Trans 6:1206–1210CrossRefGoogle Scholar
  35. 35.
    Xia JX, Di J, Yin S, Xu H, Zhang J, Xu YG, Xu L, Li HM, Ji MX (2014) RSC Adv 4:82–90CrossRefGoogle Scholar
  36. 36.
    Hou DF, Luo W, Huang YH, Yu JC, Hu XL (2013) Nanoscale 5:2028–2035CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiaona Liu
    • 1
  • Qifang Lu
    • 1
  • Cuiqing Wang
    • 2
  • Chaofeng Zhu
    • 1
  • Suwen Liu
    • 1
  1. 1.Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Material Science and EngineeringQilu University of TechnologyJinanPeople’s Republic of China
  2. 2.Lunan Research Institute of Coal ChemistryJiningPeople’s Republic of China

Personalised recommendations