Advertisement

Journal of Sol-Gel Science and Technology

, Volume 73, Issue 1, pp 91–102 | Cite as

Characterization and photocatalytic activity of TiO2 by sol–gel in acid and basic environments

  • L. Bergamonti
  • I. Alfieri
  • A. Lorenzi
  • A. Montenero
  • G. Predieri
  • R. Di Maggio
  • F. Girardi
  • L. Lazzarini
  • P. P. Lottici
Original Paper

Abstract

The sol–gel synthesis of water-based sols of nanocrystalline TiO2 in a large pH range (1.3–10.6) was carried out by acid hydrolysis of titanium(IV) isopropoxide with acetic acid or malonic acid acting also as complexing agents. Subsequent peptization was achieved in acid medium, in the case of acetic acid, and in basic medium (through triethylamine), in the case of malonic acid. The TiO2 particles were characterized using X-ray diffraction, Raman, high-resolution transmission electron microscopy and dynamic light scattering–electrophoretic light scattering. Methyl orange (MeO) and methylene blue (MB) were used as model contaminants to investigate the degradation activity of the different sols under UV irradiation. MB molecules adsorbed on the TiO2 surface of the basic sol were found as trimeric species. The basic TiO2 sol was effective for the degradation of both dyes, whereas the acid sols gave satisfactory results only for MeO.

Keywords

Sol–gel TiO2 Nanocrystalline titania Photocatalytic dye degradation Methylene blue Methyl orange 

References

  1. 1.
    Hore S, Palomares E, Smit H, Bakker NJ, Comte P, Liska P, Thampi KR, Kroon JM, Hinsch A, Durrant JR (2005) J Mater Chem 15:412–418CrossRefGoogle Scholar
  2. 2.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215–218CrossRefGoogle Scholar
  3. 3.
    Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Nano Lett 7:69–74CrossRefGoogle Scholar
  4. 4.
    Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) J Am Chem Soc 130:13364–13372CrossRefGoogle Scholar
  5. 5.
    Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides SG, Falaras P (2003) J Catal 220:127–135CrossRefGoogle Scholar
  6. 6.
    Mehrjouei M, Müller S, Möller D (2014) Environ Prog Sustainable Energy 33:178–183CrossRefGoogle Scholar
  7. 7.
    Kamegawa T, Suzuki N, Yamashita H (2011) IOP Conf Ser Mat Sci Eng 18:172002CrossRefGoogle Scholar
  8. 8.
    Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2010) Curr Org Chem 14:616–629CrossRefGoogle Scholar
  9. 9.
    Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) J Photochem Photobiol C Photochem Rev 9:171–192CrossRefGoogle Scholar
  10. 10.
    Panniello A, Curri ML, Diso D, Licciulli L, Locaputo V, Agostiano A, Comparelli R, Mascolo G (2012) Appl Catal B Environ 121–122:190–197CrossRefGoogle Scholar
  11. 11.
    Chen H, Nanayakkara CE, Grassian VH (2012) Chem Rev 112:5919–5948CrossRefGoogle Scholar
  12. 12.
    Licciulli A, Calia A, Lettieri M, Diso D, Masieri M, Franza S, Amadelli R, Casarano G (2011) J Sol–Gel Sci Techol 60:437–444CrossRefGoogle Scholar
  13. 13.
    Kapridaki C, Maravelaki-Kalaitzaki P (2013) Prog Org Coat 76:400–410CrossRefGoogle Scholar
  14. 14.
    Quagliarini E, Bondioli F, Goffredo G, Cordoni C, Munafò P (2012) Constr Build Mater 37:51–57CrossRefGoogle Scholar
  15. 15.
    Bergamonti L, Alfieri I, Franzò M, Lorenzi A, Montenero A, Predieri G, Raganato M, Calia A, Lazzarini L, Bersani D, Lottici PP (2013) Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones. Environ Sci Pollut Res Int. doi: 10.1007/11356-013-2136-5 Google Scholar
  16. 16.
    Fonseca AJ, Pina F, Macedo MF, Leal N, Romanowska-Deskins A, Laiz L, Gómez-Bolea A, Saiz-Jimenez C (2010) Int Biodeter Biodegr 64:388–396CrossRefGoogle Scholar
  17. 17.
    Graziani L, Quagliarini E, Osimani A, Aquilanti L, Clementi F, Yéprémian C, Lariccia V, Amoroso S, D’Orazio M (2013) Build Environ 64:38–45CrossRefGoogle Scholar
  18. 18.
    Pinho L, Elhaddad F, Facio DS, Mosquera MJ (2012) Appl Surf Sci 275:389–396CrossRefGoogle Scholar
  19. 19.
    Quagliarini E, Bondioli F, Goffredo GB, Cordoni C, Munafò P (2012) J Cult Herit 13:204–209CrossRefGoogle Scholar
  20. 20.
    Bergamonti L, Alfieri I, Lorenzi L, Montenero A, Predieri G, Barone G, Mazzoleni P, Pasquale S, Lottici PP (2013) Appl Surf Sci 282:165–173CrossRefGoogle Scholar
  21. 21.
    Pal M, García Serrano J, Santiago P, Pal U (2007) J Phys Chem C 111:96–102CrossRefGoogle Scholar
  22. 22.
    Testino A, Bellobono IR, Buscaglia V, Canevali C, D’Arienzo M, Polizzi S, Scotti R, Morazzoni F (2007) J Am Chem Soc 129:3564–3575CrossRefGoogle Scholar
  23. 23.
    Tian G, Fu H, Jing L, Xin B, Pan K (2008) J Phys Chem C 112:3083–3089CrossRefGoogle Scholar
  24. 24.
    Zhang J, Xu Q, Feng Z, Li M, Li C (2008) Angew Chem Int Ed 47:1766–1769CrossRefGoogle Scholar
  25. 25.
    Neppolian B, Yamashita H, Okada Y, Nishijima H, Anpo M (2005) Catal Lett 105:111–117CrossRefGoogle Scholar
  26. 26.
    Sakatani Y, Grosso D, Nicole L, Boissière C, Soler-Illia GJ, Sanchez C (2006) J Mater Chem 16:77–82CrossRefGoogle Scholar
  27. 27.
    Zhang Z, Wang CC, Zakaria R, Ying JY (1998) J Phys Chem B 102:10871–10878CrossRefGoogle Scholar
  28. 28.
    Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (2003) Chem Mater 15:3326–3331CrossRefGoogle Scholar
  29. 29.
    Zumeta I, Díaz D, Santiago P (2010) J Phys Chem C 114:11381–11389CrossRefGoogle Scholar
  30. 30.
    Kim SJ, Lee EG, Park SD, Jeon CJ, Cho YH, Rhee CK, Kim WW (2001) J Sol–Gel Sci Technol 22:63–74CrossRefGoogle Scholar
  31. 31.
    Addamo M, Bellardita M, Di Paola A, Palmisano L (2006) Chem Commun 4943–4945Google Scholar
  32. 32.
    Roy HG (2013) Res Appl Mater 1:65–72Google Scholar
  33. 33.
    Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Chem Mater 14:3808–3816CrossRefGoogle Scholar
  34. 34.
    Sung-Suh HM, Choi JR, Hah JH, Bae YC, Koo SM, Chan BY (2004) J Photoch Photobiol A 163:37–44CrossRefGoogle Scholar
  35. 35.
    Park JH, Kim S, Bard AJ (2006) Nano Lett 6:24–28CrossRefGoogle Scholar
  36. 36.
    Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349–6353CrossRefGoogle Scholar
  37. 37.
    Zaleska A (2008) Recent Pat Eng 2:157–164CrossRefGoogle Scholar
  38. 38.
    Akpan UG, Hameed BH (2010) Appl Catal A Gen 375:1–11CrossRefGoogle Scholar
  39. 39.
    Dozzi MV, Prati L, Canton P, Selli E (2009) Phys Chem Chem Phys 11:7171–7180CrossRefGoogle Scholar
  40. 40.
    Smitha VS, Manjumol KA, Baiju KV, Ghosh S, Perumal P, Warrier KGK (2010) J Sol–Gel Sci Technol 54:203–211CrossRefGoogle Scholar
  41. 41.
    Primo A, Corma A, Garcìa H (2011) Phys Chem Chem Phys 13:886–910CrossRefGoogle Scholar
  42. 42.
    Yogi C, Kojima K, Hashishin T, Wada N, Inada Y, Della Gaspera E, Bersani M, Martucci A, Liu L, Sham TK (2011) J Phys Chem 115:6554–6560Google Scholar
  43. 43.
    Djaoued Y, Brüning R, Bersani D, Lottici PP, Badilescu S (2004) Mater Lett 58:2618–2622CrossRefGoogle Scholar
  44. 44.
    Chen X, Mao SS (2007) Chem Rev 107:2891–2959CrossRefGoogle Scholar
  45. 45.
    Kawahara T, Konishi Y, Tada H, Tohge N, Nishi J, Ito S (2002) Angew Chem Int Ed 41:2811–2813CrossRefGoogle Scholar
  46. 46.
    Alapi A, Sipas P, Ilisz I, Wittmann G, Ambrus Z, Kiricsi I, Mogyoròsi K, Dombi A (2006) Appl Catal A Gen 303:1–8CrossRefGoogle Scholar
  47. 47.
    Zhang H, Banfield JF (2000) J Phys Chem B 104:3481–3487CrossRefGoogle Scholar
  48. 48.
    Ozawa T, Iwasaki M, Tada H, Akita T, Tanaka K, Ito S (2005) J Colloid Interface Sci 281:510–513CrossRefGoogle Scholar
  49. 49.
    Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) J Phys Chem C 111:13222–13231CrossRefGoogle Scholar
  50. 50.
    Li JG, Ishigaki T, Sun X (2007) J Phys Chem C 111:4969–4976CrossRefGoogle Scholar
  51. 51.
    Henderson MA, Lyubinetsky I (2013) Chem Rev 113:4428–4455CrossRefGoogle Scholar
  52. 52.
    Di Paola A, Bellardita M, Palmisano L (2013) Catalysts 3:36–73CrossRefGoogle Scholar
  53. 53.
    Kandiel TA, Robben L, Alkaim A, Bahnemann D (2013) Photochem Photobiol Sci 12:602–609CrossRefGoogle Scholar
  54. 54.
    Sabbah H (2013) Mater Exp 3:171–175CrossRefGoogle Scholar
  55. 55.
    Guetta N, Amar HA (2005) Desalination 185:427–437CrossRefGoogle Scholar
  56. 56.
    Coutinho CA, Gupta VK (2009) J Colloid Interface Sci 333:457–464CrossRefGoogle Scholar
  57. 57.
    Chang H, Su C, Lo CH, Chen LC, Tsung TT, Jwo CS (2004) Mater Trans 45:3334–3337CrossRefGoogle Scholar
  58. 58.
    Ding Z, Lu GQ, Greenfield PF (2000) J Phys Chem B 104:4815–4820CrossRefGoogle Scholar
  59. 59.
    Kapinus EI, Viktorova TI (2010) Theor Exp Chem 46:163–167CrossRefGoogle Scholar
  60. 60.
    Kapinus EI, Viktorova TI, Khalyavka TA (2009) Theor Exp Chem 45:114–117CrossRefGoogle Scholar
  61. 61.
    Khalyavka TA, Shimanovskaya VV, Strelko VV, Kapinus EI (2001) Theor Exp Chem 37:58–62CrossRefGoogle Scholar
  62. 62.
    Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New YorkGoogle Scholar
  63. 63.
    Jiang J, Oberdörster G, Biswas P (2009) J Nanopart Res 11:77–89CrossRefGoogle Scholar
  64. 64.
    Nam W, Kim J, Han G (2002) Chemosphere 47:1019–1024CrossRefGoogle Scholar
  65. 65.
    Kodom T, Amouzou E, Djaneye-Boundjou G, Moctar BL (2012) Int J Chem Technol 4:45–56CrossRefGoogle Scholar
  66. 66.
    Oakes J, Gratton P (1998) J Chem Soc Perkin Trans 2:2563–2568CrossRefGoogle Scholar
  67. 67.
    Al-Quadawi S, Salman SR (2002) J Photochem Photobiol A 148:161–168CrossRefGoogle Scholar
  68. 68.
    Di Maggio R, Fedrizzi L, Rossi S, Adhes J (2001) Sci Technol 15:793–808Google Scholar
  69. 69.
    Rahal R, Wankhade A, Cha D, Fihri A, Ould-Chikh S, Patil U, Polshettiwar V (2012) RSC Adv 2:7048–7052CrossRefGoogle Scholar
  70. 70.
    Lutterotti L, Matthies S, Wenk HR, Goodwin M (1997) J Appl Phys 81:594–600CrossRefGoogle Scholar
  71. 71.
    Bersani D, Antonioli G, Lottici PP, Lopez T (1998) J Non Cryst Solids 234:175–181CrossRefGoogle Scholar
  72. 72.
    Lottici PP, Bersani D, Braghini M, Montenero A (1993) J Mater Sci 28:177–183CrossRefGoogle Scholar
  73. 73.
    Bersani D, Lottici PP, Ding XZ (1998) Appl Phys Lett 72:73–75CrossRefGoogle Scholar
  74. 74.
    Swamy V, Kuznetsov A, Dubrovinsky LS, Caruso RA, Shchukin DG, Muddle BC (2005) Phys Rev B 71:184302CrossRefGoogle Scholar
  75. 75.
    Swamy V (2008) Phys Rev B 77:195414CrossRefGoogle Scholar
  76. 76.
    Golubović A, Šćepanović M, Kremenović A, Aškrabić S, Berec V, Dohćević-Mitrović Z, Popović ZV (2009) J Sol–Gel Sci Technol 49:311–319CrossRefGoogle Scholar
  77. 77.
    Kosmulski M (2002) Adv Colloid Interfac 99:255–264CrossRefGoogle Scholar
  78. 78.
    Kosmulski M (2009) J Colloid Interface Sci 337:439–448CrossRefGoogle Scholar
  79. 79.
    Strataki N, Bekiari V, Stathatos E, Lianos P (2007) J Photochem Photobiol A 191:13–18CrossRefGoogle Scholar
  80. 80.
    Nishikiori H, Nagaya S, Tanaka N, Katsuki A, Fuji T (1999) Bull Chem Soc Jpn 72:915–921CrossRefGoogle Scholar
  81. 81.
    Liu B, Wen L, Nakata K, Zhao X, Liu S, Ochiai T, Murakami T, Fujishima A (2012) Chem Eur J 18:12705–12711CrossRefGoogle Scholar
  82. 82.
    Zhao Z, Malinowski ER (1999) Appl Spectrosc 53:1567–1574CrossRefGoogle Scholar
  83. 83.
    Braswell E (1968) J Phys Chem 72:2477–2483CrossRefGoogle Scholar
  84. 84.
    Georges J (1995) Spectrochim Acta A 51:985–994CrossRefGoogle Scholar
  85. 85.
    Heger D, Jirkovský J, Klán P (2005) J Phys Chem A 109:6702–6709CrossRefGoogle Scholar
  86. 86.
    Ghanadzadeh Gilani A, Moghadam M, Hosseini SE, Zakerhamidi MS (2011) Spectrochim Acta A 83:100– 105Google Scholar
  87. 87.
    Antonov L, Gergov G, Petrov V, Kubista M, Nygren J (1999) Talanta 49:99–106CrossRefGoogle Scholar
  88. 88.
    Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Appl Catal B Environ 31:145–157CrossRefGoogle Scholar
  89. 89.
    Li H, Li J, Huo Y (2006) J Phys Chem B 110:1559–1565CrossRefGoogle Scholar
  90. 90.
    Tahiri H, Ichou YA, Herrmann JM (1998) J Photochem Photobiol A 114:219–226CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • L. Bergamonti
    • 1
  • I. Alfieri
    • 1
  • A. Lorenzi
    • 1
  • A. Montenero
    • 1
  • G. Predieri
    • 1
  • R. Di Maggio
    • 2
  • F. Girardi
    • 2
  • L. Lazzarini
    • 3
  • P. P. Lottici
    • 4
  1. 1.Department of ChemistryUniversity of ParmaParmaItaly
  2. 2.Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly
  3. 3.IMEM-CNRParmaItaly
  4. 4.Department of Physics and Earth SciencesUniversity of ParmaParmaItaly

Personalised recommendations