Skip to main content
Log in

Characterization and photocatalytic activity of TiO2 by sol–gel in acid and basic environments

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol–gel synthesis of water-based sols of nanocrystalline TiO2 in a large pH range (1.3–10.6) was carried out by acid hydrolysis of titanium(IV) isopropoxide with acetic acid or malonic acid acting also as complexing agents. Subsequent peptization was achieved in acid medium, in the case of acetic acid, and in basic medium (through triethylamine), in the case of malonic acid. The TiO2 particles were characterized using X-ray diffraction, Raman, high-resolution transmission electron microscopy and dynamic light scattering–electrophoretic light scattering. Methyl orange (MeO) and methylene blue (MB) were used as model contaminants to investigate the degradation activity of the different sols under UV irradiation. MB molecules adsorbed on the TiO2 surface of the basic sol were found as trimeric species. The basic TiO2 sol was effective for the degradation of both dyes, whereas the acid sols gave satisfactory results only for MeO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hore S, Palomares E, Smit H, Bakker NJ, Comte P, Liska P, Thampi KR, Kroon JM, Hinsch A, Durrant JR (2005) J Mater Chem 15:412–418

    Article  Google Scholar 

  2. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215–218

    Article  Google Scholar 

  3. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Nano Lett 7:69–74

    Article  Google Scholar 

  4. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) J Am Chem Soc 130:13364–13372

    Article  Google Scholar 

  5. Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides SG, Falaras P (2003) J Catal 220:127–135

    Article  Google Scholar 

  6. Mehrjouei M, Müller S, Möller D (2014) Environ Prog Sustainable Energy 33:178–183

    Article  Google Scholar 

  7. Kamegawa T, Suzuki N, Yamashita H (2011) IOP Conf Ser Mat Sci Eng 18:172002

    Article  Google Scholar 

  8. Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2010) Curr Org Chem 14:616–629

    Article  Google Scholar 

  9. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) J Photochem Photobiol C Photochem Rev 9:171–192

    Article  Google Scholar 

  10. Panniello A, Curri ML, Diso D, Licciulli L, Locaputo V, Agostiano A, Comparelli R, Mascolo G (2012) Appl Catal B Environ 121–122:190–197

    Article  Google Scholar 

  11. Chen H, Nanayakkara CE, Grassian VH (2012) Chem Rev 112:5919–5948

    Article  Google Scholar 

  12. Licciulli A, Calia A, Lettieri M, Diso D, Masieri M, Franza S, Amadelli R, Casarano G (2011) J Sol–Gel Sci Techol 60:437–444

    Article  Google Scholar 

  13. Kapridaki C, Maravelaki-Kalaitzaki P (2013) Prog Org Coat 76:400–410

    Article  Google Scholar 

  14. Quagliarini E, Bondioli F, Goffredo G, Cordoni C, Munafò P (2012) Constr Build Mater 37:51–57

    Article  Google Scholar 

  15. Bergamonti L, Alfieri I, Franzò M, Lorenzi A, Montenero A, Predieri G, Raganato M, Calia A, Lazzarini L, Bersani D, Lottici PP (2013) Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones. Environ Sci Pollut Res Int. doi:10.1007/11356-013-2136-5

    Google Scholar 

  16. Fonseca AJ, Pina F, Macedo MF, Leal N, Romanowska-Deskins A, Laiz L, Gómez-Bolea A, Saiz-Jimenez C (2010) Int Biodeter Biodegr 64:388–396

    Article  Google Scholar 

  17. Graziani L, Quagliarini E, Osimani A, Aquilanti L, Clementi F, Yéprémian C, Lariccia V, Amoroso S, D’Orazio M (2013) Build Environ 64:38–45

    Article  Google Scholar 

  18. Pinho L, Elhaddad F, Facio DS, Mosquera MJ (2012) Appl Surf Sci 275:389–396

    Article  Google Scholar 

  19. Quagliarini E, Bondioli F, Goffredo GB, Cordoni C, Munafò P (2012) J Cult Herit 13:204–209

    Article  Google Scholar 

  20. Bergamonti L, Alfieri I, Lorenzi L, Montenero A, Predieri G, Barone G, Mazzoleni P, Pasquale S, Lottici PP (2013) Appl Surf Sci 282:165–173

    Article  Google Scholar 

  21. Pal M, García Serrano J, Santiago P, Pal U (2007) J Phys Chem C 111:96–102

    Article  Google Scholar 

  22. Testino A, Bellobono IR, Buscaglia V, Canevali C, D’Arienzo M, Polizzi S, Scotti R, Morazzoni F (2007) J Am Chem Soc 129:3564–3575

    Article  Google Scholar 

  23. Tian G, Fu H, Jing L, Xin B, Pan K (2008) J Phys Chem C 112:3083–3089

    Article  Google Scholar 

  24. Zhang J, Xu Q, Feng Z, Li M, Li C (2008) Angew Chem Int Ed 47:1766–1769

    Article  Google Scholar 

  25. Neppolian B, Yamashita H, Okada Y, Nishijima H, Anpo M (2005) Catal Lett 105:111–117

    Article  Google Scholar 

  26. Sakatani Y, Grosso D, Nicole L, Boissière C, Soler-Illia GJ, Sanchez C (2006) J Mater Chem 16:77–82

    Article  Google Scholar 

  27. Zhang Z, Wang CC, Zakaria R, Ying JY (1998) J Phys Chem B 102:10871–10878

    Article  Google Scholar 

  28. Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (2003) Chem Mater 15:3326–3331

    Article  Google Scholar 

  29. Zumeta I, Díaz D, Santiago P (2010) J Phys Chem C 114:11381–11389

    Article  Google Scholar 

  30. Kim SJ, Lee EG, Park SD, Jeon CJ, Cho YH, Rhee CK, Kim WW (2001) J Sol–Gel Sci Technol 22:63–74

    Article  Google Scholar 

  31. Addamo M, Bellardita M, Di Paola A, Palmisano L (2006) Chem Commun 4943–4945

  32. Roy HG (2013) Res Appl Mater 1:65–72

    Google Scholar 

  33. Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Chem Mater 14:3808–3816

    Article  Google Scholar 

  34. Sung-Suh HM, Choi JR, Hah JH, Bae YC, Koo SM, Chan BY (2004) J Photoch Photobiol A 163:37–44

    Article  Google Scholar 

  35. Park JH, Kim S, Bard AJ (2006) Nano Lett 6:24–28

    Article  Google Scholar 

  36. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349–6353

    Article  Google Scholar 

  37. Zaleska A (2008) Recent Pat Eng 2:157–164

    Article  Google Scholar 

  38. Akpan UG, Hameed BH (2010) Appl Catal A Gen 375:1–11

    Article  Google Scholar 

  39. Dozzi MV, Prati L, Canton P, Selli E (2009) Phys Chem Chem Phys 11:7171–7180

    Article  Google Scholar 

  40. Smitha VS, Manjumol KA, Baiju KV, Ghosh S, Perumal P, Warrier KGK (2010) J Sol–Gel Sci Technol 54:203–211

    Article  Google Scholar 

  41. Primo A, Corma A, Garcìa H (2011) Phys Chem Chem Phys 13:886–910

    Article  Google Scholar 

  42. Yogi C, Kojima K, Hashishin T, Wada N, Inada Y, Della Gaspera E, Bersani M, Martucci A, Liu L, Sham TK (2011) J Phys Chem 115:6554–6560

    Google Scholar 

  43. Djaoued Y, Brüning R, Bersani D, Lottici PP, Badilescu S (2004) Mater Lett 58:2618–2622

    Article  Google Scholar 

  44. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  Google Scholar 

  45. Kawahara T, Konishi Y, Tada H, Tohge N, Nishi J, Ito S (2002) Angew Chem Int Ed 41:2811–2813

    Article  Google Scholar 

  46. Alapi A, Sipas P, Ilisz I, Wittmann G, Ambrus Z, Kiricsi I, Mogyoròsi K, Dombi A (2006) Appl Catal A Gen 303:1–8

    Article  Google Scholar 

  47. Zhang H, Banfield JF (2000) J Phys Chem B 104:3481–3487

    Article  Google Scholar 

  48. Ozawa T, Iwasaki M, Tada H, Akita T, Tanaka K, Ito S (2005) J Colloid Interface Sci 281:510–513

    Article  Google Scholar 

  49. Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) J Phys Chem C 111:13222–13231

    Article  Google Scholar 

  50. Li JG, Ishigaki T, Sun X (2007) J Phys Chem C 111:4969–4976

    Article  Google Scholar 

  51. Henderson MA, Lyubinetsky I (2013) Chem Rev 113:4428–4455

    Article  Google Scholar 

  52. Di Paola A, Bellardita M, Palmisano L (2013) Catalysts 3:36–73

    Article  Google Scholar 

  53. Kandiel TA, Robben L, Alkaim A, Bahnemann D (2013) Photochem Photobiol Sci 12:602–609

    Article  Google Scholar 

  54. Sabbah H (2013) Mater Exp 3:171–175

    Article  Google Scholar 

  55. Guetta N, Amar HA (2005) Desalination 185:427–437

    Article  Google Scholar 

  56. Coutinho CA, Gupta VK (2009) J Colloid Interface Sci 333:457–464

    Article  Google Scholar 

  57. Chang H, Su C, Lo CH, Chen LC, Tsung TT, Jwo CS (2004) Mater Trans 45:3334–3337

    Article  Google Scholar 

  58. Ding Z, Lu GQ, Greenfield PF (2000) J Phys Chem B 104:4815–4820

    Article  Google Scholar 

  59. Kapinus EI, Viktorova TI (2010) Theor Exp Chem 46:163–167

    Article  Google Scholar 

  60. Kapinus EI, Viktorova TI, Khalyavka TA (2009) Theor Exp Chem 45:114–117

    Article  Google Scholar 

  61. Khalyavka TA, Shimanovskaya VV, Strelko VV, Kapinus EI (2001) Theor Exp Chem 37:58–62

    Article  Google Scholar 

  62. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  63. Jiang J, Oberdörster G, Biswas P (2009) J Nanopart Res 11:77–89

    Article  Google Scholar 

  64. Nam W, Kim J, Han G (2002) Chemosphere 47:1019–1024

    Article  Google Scholar 

  65. Kodom T, Amouzou E, Djaneye-Boundjou G, Moctar BL (2012) Int J Chem Technol 4:45–56

    Article  Google Scholar 

  66. Oakes J, Gratton P (1998) J Chem Soc Perkin Trans 2:2563–2568

    Article  Google Scholar 

  67. Al-Quadawi S, Salman SR (2002) J Photochem Photobiol A 148:161–168

    Article  Google Scholar 

  68. Di Maggio R, Fedrizzi L, Rossi S, Adhes J (2001) Sci Technol 15:793–808

    Google Scholar 

  69. Rahal R, Wankhade A, Cha D, Fihri A, Ould-Chikh S, Patil U, Polshettiwar V (2012) RSC Adv 2:7048–7052

    Article  Google Scholar 

  70. Lutterotti L, Matthies S, Wenk HR, Goodwin M (1997) J Appl Phys 81:594–600

    Article  Google Scholar 

  71. Bersani D, Antonioli G, Lottici PP, Lopez T (1998) J Non Cryst Solids 234:175–181

    Article  Google Scholar 

  72. Lottici PP, Bersani D, Braghini M, Montenero A (1993) J Mater Sci 28:177–183

    Article  Google Scholar 

  73. Bersani D, Lottici PP, Ding XZ (1998) Appl Phys Lett 72:73–75

    Article  Google Scholar 

  74. Swamy V, Kuznetsov A, Dubrovinsky LS, Caruso RA, Shchukin DG, Muddle BC (2005) Phys Rev B 71:184302

    Article  Google Scholar 

  75. Swamy V (2008) Phys Rev B 77:195414

    Article  Google Scholar 

  76. Golubović A, Šćepanović M, Kremenović A, Aškrabić S, Berec V, Dohćević-Mitrović Z, Popović ZV (2009) J Sol–Gel Sci Technol 49:311–319

    Article  Google Scholar 

  77. Kosmulski M (2002) Adv Colloid Interfac 99:255–264

    Article  Google Scholar 

  78. Kosmulski M (2009) J Colloid Interface Sci 337:439–448

    Article  Google Scholar 

  79. Strataki N, Bekiari V, Stathatos E, Lianos P (2007) J Photochem Photobiol A 191:13–18

    Article  Google Scholar 

  80. Nishikiori H, Nagaya S, Tanaka N, Katsuki A, Fuji T (1999) Bull Chem Soc Jpn 72:915–921

    Article  Google Scholar 

  81. Liu B, Wen L, Nakata K, Zhao X, Liu S, Ochiai T, Murakami T, Fujishima A (2012) Chem Eur J 18:12705–12711

    Article  Google Scholar 

  82. Zhao Z, Malinowski ER (1999) Appl Spectrosc 53:1567–1574

    Article  Google Scholar 

  83. Braswell E (1968) J Phys Chem 72:2477–2483

    Article  Google Scholar 

  84. Georges J (1995) Spectrochim Acta A 51:985–994

    Article  Google Scholar 

  85. Heger D, Jirkovský J, Klán P (2005) J Phys Chem A 109:6702–6709

    Article  Google Scholar 

  86. Ghanadzadeh Gilani A, Moghadam M, Hosseini SE, Zakerhamidi MS (2011) Spectrochim Acta A 83:100– 105

  87. Antonov L, Gergov G, Petrov V, Kubista M, Nygren J (1999) Talanta 49:99–106

    Article  Google Scholar 

  88. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Appl Catal B Environ 31:145–157

    Article  Google Scholar 

  89. Li H, Li J, Huo Y (2006) J Phys Chem B 110:1559–1565

    Article  Google Scholar 

  90. Tahiri H, Ichou YA, Herrmann JM (1998) J Photochem Photobiol A 114:219–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bergamonti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergamonti, L., Alfieri, I., Lorenzi, A. et al. Characterization and photocatalytic activity of TiO2 by sol–gel in acid and basic environments. J Sol-Gel Sci Technol 73, 91–102 (2015). https://doi.org/10.1007/s10971-014-3498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3498-y

Keywords

Navigation