Journal of Sol-Gel Science and Technology

, Volume 73, Issue 1, pp 32–37 | Cite as

Sol–gel preparation and characterization of epitaxial Y0.5Ce0.5O1.75 films on biaxially-textured NiW tapes

  • Yuanqing Chen
  • Mengjuan Li
  • Xinni Tang
  • Lajun Feng
Original Paper


High-quality Y0.5Ce0.5O1.75 films were prepared on biaxially-textured NiW tapes using sol–gel method. Y0.5Ce0.5O1.75 precursor sol was prepared using yttrium acetate and cerium 2,4-pentadionate as starting materials, propionic acid and methonal as solvents. Influence of the annealing temperature, the ion concentration and the Y/Ce mole ratio of the sol on the phase evolution, the film texture, and the film surface quality was investigated. Using the precursor sol with a low ion concentration of 0.3 mol/l, well-textured Y0.5Ce0.5O1.75 films with smooth surface were obtained on NiW tapes through an annealing process at 1,000 °C under N2 with 5 vol.% H2. The preferred c-axis orientation of the Y0.5Ce0.5O1.75 films reached a high value of 98.5 %, and the full width of half maximum of the phi scan reached an average value as low as 5.1°. The Y0.5Ce0.5O1.75 film also showed a smooth surface, with the root mean square roughness as low as 4.1 nm over 10 × 10 μm2, and 6.7 nm over 50 × 50 μm2.


Coated conductor Film Sol–gel Buffer layer Y0.5Ce0.5O1.75 



This project is supported by the National Natural Science Foundation of China (Nos. 51102195, and 51174160) and the Foundation of Science and Technology of Shaanxi Province (No. 2013KJXX-36).


  1. 1.
    Chen Y, Yan F, Liu Z, Zhao G, Feng L (2013) J Fluor Chem 148:36CrossRefGoogle Scholar
  2. 2.
    Glowacki BA, Mosiadz M (2009) J Sol–Gel Sci Technol 51:335CrossRefGoogle Scholar
  3. 3.
    Chen Y, Wu C, Zhao G, You C (2012) Supercond Sci Technol 25:062001CrossRefGoogle Scholar
  4. 4.
    Du P, Wang SS, Chen H, Wang Z, Sun JC, Han Z, Schmidt W, Neumuller HW (2007) Phys C 463–465:580CrossRefGoogle Scholar
  5. 5.
    Lu YM, Liu ZJ, Bai CY, Fan F, Zhao R, Liu ZY, Hühne R, Holzapfel B, Cai CB (2013) Phys C 485:15CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Li XF, Khoryushin A, He D, Andersen NH, Bhansen J, Grivel JC (2012) Supercond Sci Technol 25:015008CrossRefGoogle Scholar
  7. 7.
    Yu ZM, Odier P, Morlens S, Chaudouet P, Bacia M, Zhou L, Zhang PX, Jin LH, Li CS, David P, Fruchart O, Lu YF (2010) J Sol–Gel Sci Technol 54:363CrossRefGoogle Scholar
  8. 8.
    Li G, Pu MH, Sun RP, Wang WT, Wu W, Zhang X, Yang Y, Cheng CH, Zhao Y (2008) J Alloys Compd 466:429CrossRefGoogle Scholar
  9. 9.
    Liu M, Shi D, Suo H, Ye S, Zhao Y, Zhu Y, Li Q, Wang L, Jihyun A, Zhou M (2009) Phys C 469:230CrossRefGoogle Scholar
  10. 10.
    Calleja A, Ricart S, Aklalouch M, Mestres N, Puig T, Obradors X (2014) J Sol–Gel Sci Technol. doi: 10.1007/s10971-014-3417-2 Google Scholar
  11. 11.
    Gilioli E, Baldini M, Bindi M, Bissoli F, Pattini F, Rampino S, Ginocchio S, Gauzzi A, Rocca M, Zannella S (2007) Phys C 463–465:609CrossRefGoogle Scholar
  12. 12.
    Fan F, Lu YM, Ying LL, Liu ZY, Cai CB, Hühne R, Holzapfel B (2011) Phys C 471:471CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yuanqing Chen
    • 1
  • Mengjuan Li
    • 1
  • Xinni Tang
    • 1
  • Lajun Feng
    • 1
  1. 1.School of Materials Science and EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations