Advertisement

Journal of Sol-Gel Science and Technology

, Volume 72, Issue 3, pp 587–592 | Cite as

Enhanced ferroelectric, dielectric and leakage properties in Ce and Ti co-doping BiFeO3 thin films

  • J. Zeng
  • Z. H. Tang
  • M. H. Tang
  • D. L. Xu
  • Y. G. Xiao
  • B. W. Zeng
  • L. Q. Li
  • Y. C. Zhou
Original Paper

Abstract

Pure BiFeO3 (BFO), Ce and Ti individual doping and co-doping BiFeO3 thin films were fabricated via sol–gel process on Pt/Ti/SiO2/Si substrates. The microstructure, surface morphology, ferroelectric and dielectric properties of BFO and doped thin films were investigated in detail. X-ray diffraction reveal that all thin films are confirmed the formation of the distorted rhombohedral perovskite structure. No impure phase is identified in all the films. The Ce and Ti co-doping BiFeO3 (BCFTO) thin films exhibited the enhanced ferroelectricity with a large remnant polarization (2P r) of 130 μC/cm2, and low leakage current density of 9.10 × 10−6 A/cm2 which is more than two orders of magnitude lower than that of pure BFO films at 100 kV/cm. The dielectric constant (364 at 1 kHz) of the BCFTO thin films is much larger than that of pure BFO thin films. These results suggest that the introductions of Ce and Ti provides an effective route for improving the ferroelectric, dielectric and leakage properties of BFO thin films.

Keywords

Ce and Ti co-doped BiFeO3 thin films Sol–gel Ferroelectricity Dielectric property 

Notes

Acknowledgments

This work was financially supported by Key Project of National Natural Science Foundations of China (NSFC) (Grant No. 11032010), NSFC (Grant No. 61274107), 973 Program (Grant No. 2012CB326404), Key Project of Hunan Provincial NSFC (Grant No. 13JJ2023), Key Project of Scientific Research Fund of Hunan Provincial Educations Department (Grant No. 12A129), Hunan Provincial Innovations Foundations for Postgraduate (Grant Nos. CX2013B257 and CX2013B261), and the Opening Project of Science and Technology on Reliability Physics and Applications Technology of Electronic Component Laboratory (ZHD201304).

References

  1. 1.
    Picozzi S, Ederer C (2009) J Phys Condens Matter 21:303201CrossRefGoogle Scholar
  2. 2.
    Balke N, Choudhury S, Jesse S, Huijben M, Chu YH, Baddorf AP, Chen LQ, Ramesh R, Kalinin SV (2009) Nat Nanotechnol 4:868–875CrossRefGoogle Scholar
  3. 3.
    Xu JL, Xie D, Yin C, Feng TT, Zhang XW, Li G, Zhao HM, Zhao YF, Ma S, Ren TL, Guan YJ, Gao XS, Zhao YG (2013) J Appl Phys 114:154103CrossRefGoogle Scholar
  4. 4.
    Raghavan CM, Kim JW, Kim SS (2013) J Sol–Gel Sci Technol 67:486–491CrossRefGoogle Scholar
  5. 5.
    Rao SS, Prater JT, Wu F, Shelton CT, Maria JP, Narayan J (2013) Nano Lett 13:5814–5821CrossRefGoogle Scholar
  6. 6.
    Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Science 324:63–66CrossRefGoogle Scholar
  7. 7.
    Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) Phys Rev B 71:014113CrossRefGoogle Scholar
  8. 8.
    Raghavan CM, Kim JW, Kim SS (2014) J Am Ceram Soc 97:235–240CrossRefGoogle Scholar
  9. 9.
    Hu GD, Cheng X, Wu WB, Yang CH (2007) Appl Phys Lett 91:232909CrossRefGoogle Scholar
  10. 10.
    Wu JG, Qiao S, Wang J, Xiao DQ, Zhu JG (2013) Appl Phys Lett 102:052904CrossRefGoogle Scholar
  11. 11.
    Gu JJ, Yang SM, Yang W, Qi YK, Zhao GL, Sun HY (2014) J Magn Magn Mater 349:140–143CrossRefGoogle Scholar
  12. 12.
    Cai W, Zhong SX, Fu CL, Chen G, Deng XL (2014) Mater Res Bull 50:259–267CrossRefGoogle Scholar
  13. 13.
    Simoes AZ, Cavalcante LS, Riccardi CS, Varela JA, Longo E (2007) J Sol–Gel Sci Technol 44:269–273CrossRefGoogle Scholar
  14. 14.
    Quan ZC, Liu W, Hu H, Xu S, Sebo B, Fang GJ, Li MY, Zhao XZ (2008) J Appl Phys 104:084102CrossRefGoogle Scholar
  15. 15.
    Xiao RZ, Pelenovich VO, Fu DJ (2013) Appl Phys Lett 103:012602CrossRefGoogle Scholar
  16. 16.
    Darby MSB, Karpinsky DV, Pokorny J, Guerind S, Kholkin AL, Miao S, Hayden BE, Reaney IM (2013) Thin Solid Films 531:56–60CrossRefGoogle Scholar
  17. 17.
    Xue X, Tan GQ, Ren HJ, Xia A (2013) Ceram Int 39:6223–6228CrossRefGoogle Scholar
  18. 18.
    Pei L, Hu N, Deng G, Chen YW, Bie YG, Li MY, Liu XL (2012) J Sol–Gel Sci Technol 64:711–717CrossRefGoogle Scholar
  19. 19.
    Liu HR, Liu ZL, Yao KL (2007) J Sol–Gel Sci Technol 41:123–128CrossRefGoogle Scholar
  20. 20.
    Kim JK, Kim SS, Kim W, Bhalla AS, Guo R (2006) Appl Phys Lett 88:132901CrossRefGoogle Scholar
  21. 21.
    Tang XW, Dai JM, Zhu XB, Sun YP (2013) J Alloys Compd 552:186–189CrossRefGoogle Scholar
  22. 22.
    Ding NF, Deng HM, Yang PX, Chu JH (2012) Mater Lett 82:71–73CrossRefGoogle Scholar
  23. 23.
    Luo LR, Wei W, Yuan XY, Shen K, Xu MX, Xu QY (2012) J Alloys Compd 540:36–38CrossRefGoogle Scholar
  24. 24.
    Liu J, Li MY, Pei L, Yu BF, Guo DY, Zhao XZ (2009) J Phys D Appl Phys 42:115409CrossRefGoogle Scholar
  25. 25.
    Kim JW, Kim SS, Kim HJ, Kim WJ, Raghavan CM, Do D, Lee MH, Song TK, Kim MH (2013) J Electroceram 30:13–18CrossRefGoogle Scholar
  26. 26.
    Dong GH, Tan GQ, Liu WL, Xia A, Ren HJ (2013) J Mater Sci: Mater Electron 24:4445–4451Google Scholar
  27. 27.
    Dong GH, Tan GQ, Luo YY, Liu WL, Ren HJ, Xia A (2013) Appl Surf Sci 290:280–286CrossRefGoogle Scholar
  28. 28.
    Zhang XY, Song Q, Xu F, Ong CK (2009) Appl Phys Lett 94:022907CrossRefGoogle Scholar
  29. 29.
    Li K, Rémiensb D, Dong XL, Costecalde J, Sama N, Lei XY, Li T, Du G, Wang GS (2013) Mater Lett 107:361–363CrossRefGoogle Scholar
  30. 30.
    Lazenka VV, Lorenz M, Modarresi H, Brachwitz K, Schwinkendorf P, Bontgen T, Vanacken J, Ziese M, Grundmann M, Moshchalkov VV (2013) J Phys D Appl Phys 46:175006CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. Zeng
    • 1
  • Z. H. Tang
    • 1
  • M. H. Tang
    • 1
  • D. L. Xu
    • 1
  • Y. G. Xiao
    • 1
  • B. W. Zeng
    • 1
  • L. Q. Li
    • 1
  • Y. C. Zhou
    • 1
  1. 1.Key Laboratory of Low Dimensional Materials and Applications Technology of Ministry of EducationsXiangtan UniversityXiangtanChina

Personalised recommendations