Journal of Sol-Gel Science and Technology

, Volume 74, Issue 2, pp 329–339 | Cite as

Effect of Mn doping on structural, dielectric and magnetic properties of BiFeO3 thin films

  • S. Riaz
  • S. M. H. Shah
  • A. Akbar
  • S. Atiq
  • S. Naseem
Original Paper


Bismuth iron oxide is amongst the class of materials that exhibit simultaneous presence of ferromagnetic and ferroelectric properties with potential applications in spintronic devices. However, there are some problems associated with BiFeO3 including large leakage current, volatile nature of Bi2O3 along with weak ferromagnetic/antiferromagnetic behavior. In order to overcome these difficulties we here report the effect of manganese (Mn) doping on BiFeO3 (BiFe1−xMnxO3 where x = 0.0–0.3, with interval of 0.05) thin films prepared using sol–gel and spin coating method. X-ray diffractometer (XRD) results show formation of phase pure rhombohedrally distorted perovskite structure. However, with the increase in Mn content, XRD peak positions shift to higher angle indicating reduction in lattice parameters and consequently the unit cell volume. Crystallite size in un-doped and Mn-doped BiFeO3 films is below cycloidal spin arrangement of BiFeO3, i.e. 62 nm. This along with charge compensation mechanism, arising due to replacement of trivalent cation with divalent ion, enhances the magnetic properties of BiFe1−xMnxO3 thin films. Ferromagnetic behavior instead of antiferromagnetic nature of BiFeO3 is observed in these BiFe1−xMnxO3 thin films for all Mn concentrations. High saturation magnetization of 102 emu/cm3 was observed for Mn content of 0.2. Dielectric constant increases and the dielectric loss decreases as the dopant concentration is increased resulting in high dielectric constant and low dielectric loss at x = 0.25. The surface work function (wf) has been calculated using Scanning Kelvin Probe technique. The wf results are correlated to the structural and then dielectric properties.


Sol–gel Thin film Ferromagnetism BiFeO3 Manganese doping Dielectric constant 


  1. 1.
    Kim JH, Funakubo H, Sugiyama Y, Ishiwara H (2011) Curr Appl Phys 11:S228–S231CrossRefGoogle Scholar
  2. 2.
    Catalan G, Scott JF (2009) Adv Mater 21:2463–2485CrossRefGoogle Scholar
  3. 3.
    Luo L, Luo W, Yuan G, Wei W, Yuan X, Zhang H, Shen K, Xu M, Xu Q (2013) J Supercond Nov Magn 26:3309–3313CrossRefGoogle Scholar
  4. 4.
    Tirupathi P, Chandra A (2013) J Alloy Compd 564:151–157CrossRefGoogle Scholar
  5. 5.
    Peng L, Deng H, Tian J, Ren Q, Peng C, Huang Z, Yang P, Chu J (2013) Appl Surf Sci 268:146–150CrossRefGoogle Scholar
  6. 6.
    Zhao J, Liu S, Zhang W, Liu Z, Liu Z (2013) J Nanopart Res 15:1969CrossRefGoogle Scholar
  7. 7.
    Zhao J, Zhang X, Liu S, Zhang W, Liu Z (2013) J Alloy Compd 557:120–123CrossRefGoogle Scholar
  8. 8.
    Sharma HB, Singh NB, Devi KN, Lee JH, Singh SB (2014) J Alloy Compd 583:106–110CrossRefGoogle Scholar
  9. 9.
    Gheorghiu F, Curecheriu L, Ianculescu A, Calugaru M, Mitoseriu L (2013) Scripta Mater 68:305–308CrossRefGoogle Scholar
  10. 10.
    Tang X, Dai J, Zhu X, Sun Y (2013) J Alloy Compd 552:186–189CrossRefGoogle Scholar
  11. 11.
    Gupta S, Tomar M, Gupta V (2013) J Exper Nanosci 8:261–266CrossRefGoogle Scholar
  12. 12.
    Huang JZ, Wang Y, Lin Y, Li M, Nan CW (2009) J Appl Phys 106:063911CrossRefGoogle Scholar
  13. 13.
    Basu S, Hossain SM, Chakravorty D, Pal M (2011) Curr Appl Phys 11:976–980CrossRefGoogle Scholar
  14. 14.
    Wang L, Xu JB, Gao B, Chang AM, Chen J, Bian L, Song CY (2013) Mater Res Bullet 48:383–388CrossRefGoogle Scholar
  15. 15.
    Reddy VA, Pathak NP, Nath R (2013) Solid State Commun 171:40–45CrossRefGoogle Scholar
  16. 16.
    Gao GY, Yang ZB, Huang W, Zeng HZ, Wang Y, Chan HLW, Wu WB, Hao JH (2013) J Appl Phys 114:094106CrossRefGoogle Scholar
  17. 17.
    Brinker CJ, Scherer GW (1990) Sol–gel science—the physics and chemistry of sol–gel processing. Academic Press, USAGoogle Scholar
  18. 18.
    Shah SMH, Riaz S, Akbar A, Atiq S, Naseem S (2014) IEEE Trans Magn. doi: 10.1109/TMAG.2014.2309720
  19. 19.
    Shah SMH, Akbar A, Riaz S, Atiq S, Naseem S (2014) IEEE Trans Magn. doi: 10.1109/TMAG.2014.2310691
  20. 20.
    Riaz S, Shah SMH, Akbar A, Kayani ZN, Naseem S (2014) IEEE Trans Magn. doi: 10.1109/TMAG.2014.2313002 Google Scholar
  21. 21.
    Xu JH, Ke H, Jia DE, Wang W, Zhou Y (2009) J Alloy Compd 472:473–477CrossRefGoogle Scholar
  22. 22.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, San DiegoGoogle Scholar
  23. 23.
    Huang A, Shannigrahi SR (2011) Thin Solid Films 519:4793–4797CrossRefGoogle Scholar
  24. 24.
    Huang D, Deng H, Yang P, Chu J (2010) Mater Lett 64:2233–2235CrossRefGoogle Scholar
  25. 25.
    Das S, Basu S, Mitra S, Chakravorty D, Mondal BN (2010) Thin Solid Films 518:4071–4075CrossRefGoogle Scholar
  26. 26.
    Zhang H, Chen X, Wang T, Wang F, Shi W (2010) J Alloys Compd 500:46–48CrossRefGoogle Scholar
  27. 27.
    Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing Company, USAGoogle Scholar
  28. 28.
    Chen HL, Lu YM, Hwang WS (2005) Mater Trans 46:872–879CrossRefGoogle Scholar
  29. 29.
    Riaz S, Naseem S (2007) J Mater Sci Technol 23:499–503Google Scholar
  30. 30.
    Acharya S, Singh K (2011) Appl Nanosci 1:97–101CrossRefGoogle Scholar
  31. 31.
    Phani AR, Santucci S (2006) J Non Crystall Solid 352:4093–4100CrossRefGoogle Scholar
  32. 32.
    Phani AR, Passacantando M, Santucci S (2007) J Phys Chem Solid 68:317–323CrossRefGoogle Scholar
  33. 33.
    Bhushan B, Basumallick A, Bandopadhyay SK, Vasanthacharya NY, Das D (2009) J Phys D Appl Phys 42:065004CrossRefGoogle Scholar
  34. 34.
    Verma KC, Ram M, Singh J, Kotnala RK (2011) J Alloy Compd 509:4967–4971CrossRefGoogle Scholar
  35. 35.
    Ishai PB, Talary MS, Caduff A, Levy E, Feldman Y (2013) Meas Sci Technol 24:102001CrossRefGoogle Scholar
  36. 36.
    Atia BS, Neha, Prakash J, Kumar R, Tripathi SK, Thakur N (2013) J Nano Electron Phys 5:19 Google Scholar
  37. 37.
    Satyam M, Ramkuma K (1990) Foundations of electronic devices. New Age International, DelhiGoogle Scholar
  38. 38.
    Sadewasser S, Glatzel T (2012) Kelvin probe force microscopy: measuring and compensating electrostatic forces. Springer, BerlinCrossRefGoogle Scholar
  39. 39.
    Chauhan S, Arora M, Sati PC, Chhoker S, Katyal SC, Kumar M (2013) Ceram Inter 39:6399–6405CrossRefGoogle Scholar
  40. 40.
    Sen K, Singh K, Gautam A, Singh M (2012) Ceram Int 38:243–249CrossRefGoogle Scholar
  41. 41.
    Akbar A, Riaz S, Ashraf R, Naseem S (2014) IEEE Trans Magn. doi: 10.1109/TMAG.2014.2311826
  42. 42.
    Riaz S, Naseem S, Xu YB (2011) J Sol-Gel Sci Technol 59:584–590Google Scholar
  43. 43.
    Chauhan S, Kumar M, Chhoker S, Katyal SC, Singh H, Jewariya M, Yadav KL (2013) Solid State Commun 152:525–529CrossRefGoogle Scholar
  44. 44.
    Ahmed T, Vorobiev A, Gevorgian S (2012) Thin Solid Films 520:4470–4474CrossRefGoogle Scholar
  45. 45.
    Jangid S, Barbar SK, Bala I, Roy M (2012) Phys B 407:3694–3699CrossRefGoogle Scholar
  46. 46.
    Chaudhuri A, Mandal K (2012) Mater Res Bull 47:1057–1061CrossRefGoogle Scholar
  47. 47.
    Liu YQ, Zhang J, Wu YH, Zhang YJ, Wei MB, Yang JH (2013) J Sol Gel Sci Technol 67:1–7CrossRefGoogle Scholar
  48. 48.
    Habouti S, Solterbeck CH, Souni ME (2007) J Sol Gel Sci Technol 42:257–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Riaz
    • 1
  • S. M. H. Shah
    • 1
  • A. Akbar
    • 1
  • S. Atiq
    • 1
  • S. Naseem
    • 1
  1. 1.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations