Advertisement

Journal of Sol-Gel Science and Technology

, Volume 72, Issue 2, pp 428–434 | Cite as

TiO2 xerogels prepared by modified sol–gel method with ethylenediamine are photoactive for the 4-nitrophenol photoreduction

  • Sandra Cipagauta
  • Agileo Hernández-Gordillo
  • Ricardo Gómez
Original Paper

Abstract

Amorphous and nanocrystalline TiO2 xerogel semiconductors were synthesized by sol–gel using different hydrolysis pH conditions with and without ethylenediamine as structural modifier. Blue-shift of the optical-electronic properties was observed for the amorphous TiO2 xerogel samples obtained in an alkaline hydrolysis medium. Different textural properties (specific surface area, N2 adsorption–desorption isotherm and pore size distribution) were promoted by the use of ethylenediamine for the amorphous TiO2 xerogel semiconductors, as well as high photocatalytic activity for the reduction of 4-nitrophenol. These results are discussed as function of the textural properties of the samples.

Keywords

Amorphous TiO2 Sol–xerogel method Ethylenediamine 4-Nitrophenol reduction 

Notes

Acknowledgments

This research was made with the support of CONACYT-SEP CB-2010-01 194451 Nanostructure Materials for Photocatalysis.

Supplementary material

10971_2014_3453_MOESM1_ESM.docx (118 kb)
Supplementary material 1 (DOCX 117 kb)

References

  1. 1.
    Tian G, Fu H, Jing L, Tia C (2009) J Hazard Mater 161:1122–1130CrossRefGoogle Scholar
  2. 2.
    Wang F, Liu Y, Dong W, Shen M, Kang Z (2011) J Phys Chem C 115:14635–14640CrossRefGoogle Scholar
  3. 3.
    Sun Q, Xu Y (2010) J Phys Chem C 114:18911–18918CrossRefGoogle Scholar
  4. 4.
    Hua A, Liang R, Zhang X, Kurdi S, Luong D, Huang H, Peng P, Marzbanra E, Oakes KD, Zhou Y, Servos MR (2013) J Photochem Photobiol A Chem 256:7–15CrossRefGoogle Scholar
  5. 5.
    Tian G, Fu H, Jing L, Xin B, Pan K (2008) J Phys Chem C 112:3083–3089CrossRefGoogle Scholar
  6. 6.
    Lee M, Yun HJ, Yu S, Yi J (2014) Catal Commun 43:11–15CrossRefGoogle Scholar
  7. 7.
    Mitsionis AI, Vaimakis TC (2013) J Therm Anal Calorim 112:621–628CrossRefGoogle Scholar
  8. 8.
    Zhoua J, Zhao G, Han G, Song B (2013) Ceram Intern 39:8347–8354CrossRefGoogle Scholar
  9. 9.
    Švadlák D, Shánělová S, Málek J, Pérez-Maqued L, Criado JM, Mitsuhashi T (2004) Thermochim Acta 414:137–143CrossRefGoogle Scholar
  10. 10.
    Randorn C, Irvine JTS, Robertson P (2008) Intern J Photoenergy ID 426872:1–6CrossRefGoogle Scholar
  11. 11.
    Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) J Phys Chem C 112:14595–14602CrossRefGoogle Scholar
  12. 12.
    Zou J, Gao J, Xie F (2010) J Alloys Compd 497:420–427CrossRefGoogle Scholar
  13. 13.
    Tao Y, Cao N, Pan J, Sun Y, Jin C, Song Y (2014) J Mater Sci 49:897–904CrossRefGoogle Scholar
  14. 14.
    Hwang KJ, Lee JW, Yoo SJ, Jeong S, Jeong DH, Shime WG, Cho DW (2013) New J Chem 37:1378CrossRefGoogle Scholar
  15. 15.
    Supphasrirongjaroen P, Kongsuebchart W, Panpranot J, Mekasuwandumrong O, Satayaprasert C, Praserthdam P (2008) Ind Eng Chem Res 47:693–697CrossRefGoogle Scholar
  16. 16.
    Carrera-López R, Castillo-Cervantes S (2012) Superficies y Vacío 25(2):82–87Google Scholar
  17. 17.
    Zuyuan W, Fuxiang Z, Yali Y, Jie C, Qing S, Naijia G (2006) Chinese J Catal 27(12):1091–1095CrossRefGoogle Scholar
  18. 18.
    Xie RC, Shang JK, Wu P (2007) US20070202334Google Scholar
  19. 19.
    Lam SM, Sin JC, Mohamed AR (2008) Recent Pat Chem Eng 1:209–219CrossRefGoogle Scholar
  20. 20.
    Choi H, Kim YJ, Varma RS, Dionysiou D (2006) Chem Mater 18:5377–5384CrossRefGoogle Scholar
  21. 21.
    Hernández-Gordillo A, Romero AG, Tzompantzi F, Gómez R (2013) Powder Technol 250:97–102CrossRefGoogle Scholar
  22. 22.
    Hernández-Gordillo A, Romero AG, Tzompantzi F, Gómez R (2014) Appl Catal B Environ 144:507–513CrossRefGoogle Scholar
  23. 23.
    Su J, Zou X, Li GD, Jiang YM, Cao Y, Zhao J, Chen JS (2013) Chem Commun 49:8217CrossRefGoogle Scholar
  24. 24.
    Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) J Mater Chem 11:1694–1703CrossRefGoogle Scholar
  25. 25.
    Yu J, Wang G, Cheng B, Zhou M (2007) Appl Catal B Environ 69:171–180CrossRefGoogle Scholar
  26. 26.
    Bowering N, Croston D, Harrison P, Walker GS (2007) Int J Photoenergy ID 90752:1–8CrossRefGoogle Scholar
  27. 27.
    Xie R, Shang JK (2007) J Mater Sci 42:6583–6589CrossRefGoogle Scholar
  28. 28.
    Zhao Y, Qiu X, Burda C (2008) Chem Mater 20:2629–2636CrossRefGoogle Scholar
  29. 29.
    Lee H, Kang M (2013) J Sol–Gel Sci Technol 3221–3224Google Scholar
  30. 30.
    Jimmy C, Yu J, Zhang L, Ho W (2002) J Photochem Photobiol A Chem 148:263–271CrossRefGoogle Scholar
  31. 31.
    Luan Y, Jing L, Xie M, Shi X, Fan X, Cao Y, Feng Y (2012) Phys Chem Chem Phys 14:1352–1359CrossRefGoogle Scholar
  32. 32.
    Sugimoto T, Zhou X, Muramatsu A, Agafonov AV, Vinogradov AV (2009) J sol–Gel Sci Technol 49:180–185CrossRefGoogle Scholar
  33. 33.
    Hafizah N, Sopyan L (2009) Int J Photoenergy ID 962783:1–8CrossRefGoogle Scholar
  34. 34.
    Yang G, Jiang Z, Shi H, Xiao T, Yan Z (2010) J Mater Chem 20:5301–5309CrossRefGoogle Scholar
  35. 35.
    López R, Gómez R (2012) J Sol–Gel Sci Technol 61:1–7CrossRefGoogle Scholar
  36. 36.
    Valencia S, Marín JM, Restrepo G (2010) Open Mater Sci J 4:9–14Google Scholar
  37. 37.
    Jiang Z, Kong L, Alenazey F, Qian Y, France L, Xiao T, Edwards P (2013) Nanoscale 5:5396CrossRefGoogle Scholar
  38. 38.
    Sun Q, Xu Y (2010) J Phys Chem C 114:18911–18918CrossRefGoogle Scholar
  39. 39.
    Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) J Catal 203:82–86CrossRefGoogle Scholar
  40. 40.
    Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Appl Catal B Environ 69:138–144CrossRefGoogle Scholar
  41. 41.
    Leelavathi A, Rao TUB, Pradeep T (2011) Nano Res Lett 6(123):2–9Google Scholar
  42. 42.
    Bangkedphol S, Keenan HE, Davidson CM, Sakultantimetha A, Sirisaksoontorn W, Songsasen A (2004) J Hazard Mater 184:533–537CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sandra Cipagauta
    • 1
  • Agileo Hernández-Gordillo
    • 2
  • Ricardo Gómez
    • 1
  1. 1.Depto. de Química, Área de Catálisis, Grupo ECOCATALUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico
  2. 2.CIIEMADInstituto Politécnico NacionalMexicoMexico

Personalised recommendations