Advertisement

Journal of Sol-Gel Science and Technology

, Volume 71, Issue 3, pp 464–469 | Cite as

The oxygen sensitive properties of (LaBa)Co2O5+δ thin films fabricated by polymer-assisted deposition technique

  • Dunhua Hong
  • Taisong Pan
  • Dayu Feng
  • Zhenlong Huang
  • Feiyi Liao
  • XiaoMei Li
  • Yin Zhang
  • Min Gao
Original Paper
  • 135 Downloads

Abstract

(LaBa)Co2O5+δ (LBCO) thin films were successfully fabricated on Si (001) substrates by polymer-assisted deposition method. Microstructures were examined by X-ray diffraction technique, which confirmed the films were a single phase, pseudo cubic structure. The electrical transport properties of the films were investigated by the temperature dependence of films resistance, which suggested that LBCO films have typical semiconductor properties. After circle tests, the oxygen–hydrogen response rate did not show obvious variation in the specific temperature environment of 580 °C. This demonstrates that the LBCO thin films have a superior stability in both oxygen and hydrogen (6 % H2, 94 % N2) environment. Simultaneously, the drastic changes of films resistance (from ~106 to ~102 Ω) with the switch of redox (O2–H2) environment within such a short time (~2.2 s) indicated that LBCO films have an excellent oxygen sensitive property and extraordinary fast surface exchange rate.

Keywords

Thin films Oxygen sensitive Crystal growth Surfaces Polymer assisted deposition 

Notes

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities of China (Nos. ZYGX2011J028 and ZYGX2012J037), the Guangdong Innovative Research Team Program (No. 201001D0104713329) and the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of PR China (No. 2012B091100097).

References

  1. 1.
    Kawada T, Suzuki J, Sase M, Kaimai A, Nigara Y (2002) J ElectrochemSoc 149:252–259CrossRefGoogle Scholar
  2. 2.
    Yamamoto. ElectrochimActa 45, 2423–2435 (2000) Google Scholar
  3. 3.
    Fergus JW (2003) J Mat Sci 38:4259–4263CrossRefGoogle Scholar
  4. 4.
    Xu YL, Zhou XH, Sorensen OT (2000) Sens Actuat B-Chem 65:2–4CrossRefGoogle Scholar
  5. 5.
    Liu J, Liu M, Collins G, Chen CL et al (2010) Chem Mat 22:799–802CrossRefGoogle Scholar
  6. 6.
    He J, Jiang JC, Liu J, Liu M, Collins G, Ma CR, Chen CL (2011) Thin Solid Films 519:4371–4376CrossRefGoogle Scholar
  7. 7.
    Yuan Z, Liu J, Weaver J, Chen CL, Jiang JC, Lin B et al (2007) Appl Phys Lett 90:202901–202905CrossRefGoogle Scholar
  8. 8.
    Jia QX, Cleskey TM, Burrell AK, Lin Y, Collis GE, Wang H et al (2004) Nat Mater 3:529–533CrossRefGoogle Scholar
  9. 9.
    Lin Y, Lee J-S, Wang H, Li Y, Foltyn SR, Jia QX (2004) Appl Phys Lett 85:5007–6001CrossRefGoogle Scholar
  10. 10.
    Burrell AK, McCleskey TM, Jia QX (2008) Chem Commun 11:1271–1275CrossRefGoogle Scholar
  11. 11.
    Dawley JT, Clem PG (2002) Appl Phys Lett 81:3028–3030CrossRefGoogle Scholar
  12. 12.
    Dechakupt T, Yang GY, Randall CA (2008) J Am Ceram Soc 91:1845–1850CrossRefGoogle Scholar
  13. 13.
    Bretos I, Schneller T, Waser R, Hennings DF, Halder S, Thomas F (2010) J Am Ceram Soc 93:506–515CrossRefGoogle Scholar
  14. 14.
    Jiang JC, Meletis EI, Yuan Z, Liu J, Weaver J, Chen CL et al (2008) J Nano Res 1:59–63CrossRefGoogle Scholar
  15. 15.
    Bao LJ, Ryley J, Li ZG, Wilker C, Zhang L, Reardon D et al (2009) Appl Phys Lett 106:114114–114119Google Scholar
  16. 16.
    Shin J, Goyal A, Jesse S, Kim DH (2009) Appl Phys Lett 94:252903CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dunhua Hong
    • 1
  • Taisong Pan
    • 1
  • Dayu Feng
    • 1
  • Zhenlong Huang
    • 1
  • Feiyi Liao
    • 1
  • XiaoMei Li
    • 1
  • Yin Zhang
    • 1
  • Min Gao
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations