Journal of Sol-Gel Science and Technology

, Volume 71, Issue 3, pp 421–427 | Cite as

Electrical and photoconducting properties of nanorod in based spinel compound/p-Si photodiode by sol–gel spin coating technique

  • A. Tataroğlu
  • Ahmed A. Al-Ghamdi
  • Saad Bin Omran
  • W. A. Farooq
  • Farid El-Tantawy
  • F. Yakuphanoglu
Original Paper


A new Schottky diode (InFe2O4/p-Si/Al) was fabricated using the sol–gel spin coating technique. The current–voltage (I–V) characteristics of the Schottky diode were investigated under various illumination intensities. The value of ideality factor (n) and zero-bias barrier height (ΦB0) for all illuminations was determined by using the forward-bias I–V measurements, and were found to be about 4.20 and 0.72 eV, respectively. The reverse current of the diode in the reverse bias increases with the increasing illumination intensities. Also, the photocurrent under illumination is higher than the dark current. In addition, the capacitance–voltage (C–V) and conductance–voltage (G–V) measurements of the diode were studied in the frequency range of 10 kHz–1 MHz. The measured values of the C decrease with the increasing frequency. The decrease in capacitance was explained on the basis of interface states. To obtain the real C and G of the diode, the measured values of C and G were corrected to eliminate the effect of series resistance. The obtained results suggest that the diode can be used as a photodiode in optoelectronic applications.


Schottky diode Sol gel Spinel compound Interface states Series resistance 


  1. 1.
    Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Sze SM (1981) Physics of semiconductor device, 2nd edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Singh J (2001) Semiconductor devices, basic principles. Wiley, New YorkGoogle Scholar
  4. 4.
    Sharma BL (1984) Metal-semiconductor Schottky barrier junction and their applications. Plenum Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Tataroğlu A, Altındal Ş (2009) J Alloys Compd 484:405–409CrossRefGoogle Scholar
  6. 6.
    Tecimer H, Uslu H, Alahmed ZA, Yakuphanoğlu F, Altındal Ş (2014) Compos Part B 57:25–30CrossRefGoogle Scholar
  7. 7.
    Osvald J (2006) Solid State Electron 50:228–231CrossRefGoogle Scholar
  8. 8.
    Karataş Ş, Yakuphanoğlu F (2013) Mater Chem Phys 138:72–77CrossRefGoogle Scholar
  9. 9.
    Nicollian EH, Goetzberger A (1967) Bell Syst Tech J 46:1055–1133CrossRefGoogle Scholar
  10. 10.
    Chattopadhyay P, RayChaudhuri B (1993) Solid-State Electron 36:605–610CrossRefGoogle Scholar
  11. 11.
    Kumar AA, Rao LD, Reddy VR, Choi C-J (2013) Curr Appl Phys 13:975–980CrossRefGoogle Scholar
  12. 12.
    Tataroğlu A (2013) Chin Phys B 22:068402 (6 pages)CrossRefGoogle Scholar
  13. 13.
    Akkal B, Benamara Z, Bouiadjra NB, Tizi S, Gruzza B (2006) Appl Surf Sci 253:1065–1070CrossRefGoogle Scholar
  14. 14.
    Yakuphanoğlu F (2010) J Alloys Compd 494:451–455CrossRefGoogle Scholar
  15. 15.
    Çakar M, Yıldırım N, Karataş Ş, Temirci C, Türüt A (2006) J Appl Phys 100:074505 (6 pages)CrossRefGoogle Scholar
  16. 16.
    Karataş Ş, Yakuphanoğlu F, Amanullah FM (2012) J Phys Chem Solids 73:46–51CrossRefGoogle Scholar
  17. 17.
    Akbashev AR, Kaul AR (2011) Russ Chem Rev 80:1159–1177CrossRefGoogle Scholar
  18. 18.
    Yoshii K, Ikeda N, Okajima Y, Yoneda Y, Matsuo Y, Horibe Y, Mori S (2008) Inorg Chem 47:6493–6501CrossRefGoogle Scholar
  19. 19.
    Kimizuka N, Takayama E (1984) J Solid State Chem 53:217CrossRefGoogle Scholar
  20. 20.
    Card HC, Rhoderick EH (1971) J Phys D Appl Phys 4:1589–1601CrossRefGoogle Scholar
  21. 21.
    Chand S (2004) Semicond Sci Technol 19:82–86CrossRefGoogle Scholar
  22. 22.
    Pür FZ, Tataroğlu A (2012) Phys Scr 86:035802 (7 pages)CrossRefGoogle Scholar
  23. 23.
    Mamor M (2009) J Phys Condens Matter 21:335802 (12 pages)CrossRefGoogle Scholar
  24. 24.
    Demirezen S, Altındal Ş, Uslu İ (2013) Curr Appl Phys 13:53–59CrossRefGoogle Scholar
  25. 25.
    Reddy VR, Reddy MSP, Lakshmi BP, Kumar AA (2011) J Alloys Compd 509:8001–8007CrossRefGoogle Scholar
  26. 26.
    Padma R, Lakshmi BP, Reddy MSP, Reddy VR (2013) Superlattices Microstruct 56:64–76CrossRefGoogle Scholar
  27. 27.
    Yahia IS, Yakuphanoğlu F, Chusnutdinow S, Wojtowicz T, Karczewski G (2013) Curr Appl Phys 13:537–543CrossRefGoogle Scholar
  28. 28.
    Kazım S, Ali V, Zulfequar M, Haq MM, Husain M (2007) Physics B 393:310–315CrossRefGoogle Scholar
  29. 29.
    Gupta RK, Cavas M, Al-Ghamdi AA, Gafer ZH, El-Tantawy F, Yakuphanoğlu F (2013) Sol Energy 92:1–9CrossRefGoogle Scholar
  30. 30.
    Lee JM, Shin JC, Hwang CS, Kim HJ, Suk C-G (1998) J Vac Sci Technol A 16:2768–2771CrossRefGoogle Scholar
  31. 31.
    Soylu M, Yakuphanoğlu F (2011) Thin Solid Films 519:1950–1954CrossRefGoogle Scholar
  32. 32.
    Donoval D, Barus M, Zdimal M (1991) Solid-State Electron 34:1365–1373CrossRefGoogle Scholar
  33. 33.
    Karimov KS, Ahmed MM, Moiz SA, Federov MI (2005) Sol Energy Mater Sol Cells 87:61–75CrossRefGoogle Scholar
  34. 34.
    Taşçıoğlu İ, Farooq WA, Turan R, Altındal Ş, Yakuphanoğlu F (2014) J Alloys Compd 590:157–161CrossRefGoogle Scholar
  35. 35.
    Nicollian EH, Brews JR (1982) Metal oxide semiconductor (MOS) physics and technology. Wiley, New YorkGoogle Scholar
  36. 36.
    Akkal B, Benamara Z, Gruzza B (2009) L Bideux Vacuum 57:219–228CrossRefGoogle Scholar
  37. 37.
    Tataroğlu A (2013) G U J Sci 26:501–508Google Scholar
  38. 38.
    Fouad SS, Sakr GB, Yahia IS, Abdel-Basset DM, Yakuphanoğlu F (2014) Mater Res Bull 49:369–383CrossRefGoogle Scholar
  39. 39.
    Fernández J, Godignon P, Berberich S, Rebollo J, Brezeanu G, Millán J (1996) Solid-State Electron 39:1359–1364CrossRefGoogle Scholar
  40. 40.
    Gupta SK, Shankar B, Taube WR, Singh J, Akhtar J (2014) Phys B 434:44–50CrossRefGoogle Scholar
  41. 41.
    Akkal B, Benamara Z, Gruzza B, Bideux L, Bouiadjra NB (2002) Mater Sci Eng C 21:291–296CrossRefGoogle Scholar
  42. 42.
    Yücedağ İ, Altındal Ş, Tataroğlu A (2007) Microelectron Eng 84:180–186CrossRefGoogle Scholar
  43. 43.
    Gupta RK, Yakuphanoğlu F (2013) Microelectron Eng 105:13–17CrossRefGoogle Scholar
  44. 44.
    Chattopadhyay P, Daw AN (1986) Solid State Electron 29:555–560CrossRefGoogle Scholar
  45. 45.
    Norde H (1979) J Appl Phys 50:5052–5053CrossRefGoogle Scholar
  46. 46.
    Tataroğlu B, Altındal Ş, Tataroğlu A (2006) Microelectron Eng 83:2016–2021Google Scholar
  47. 47.
    Werner JH, Güttler HH (1991) J Appl Phys 69:1522–1533CrossRefGoogle Scholar
  48. 48.
    Chatterjee S, Kuo Y, Lu J (2008) Microelectron Eng 85:202–209CrossRefGoogle Scholar
  49. 49.
    Karataş Ş, Türüt A (2004) Vacuum 74:45–53CrossRefGoogle Scholar
  50. 50.
    Alahmed ZA, Mansour ShA, Aydın ME, Yakuphanoğlu F (2013) Solid State Commun 163:23–27CrossRefGoogle Scholar
  51. 51.
    Cova P, Singh A (1990) Solid-State Electron 33:11–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Tataroğlu
    • 1
  • Ahmed A. Al-Ghamdi
    • 2
  • Saad Bin Omran
    • 3
  • W. A. Farooq
    • 3
  • Farid El-Tantawy
    • 4
  • F. Yakuphanoglu
    • 2
    • 5
  1. 1.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey
  2. 2.Physics Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of Physics, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt
  5. 5.Department of Physics, Faculty of ScienceFırat UniversityElazigTurkey

Personalised recommendations