Journal of Sol-Gel Science and Technology

, Volume 71, Issue 2, pp 364–371 | Cite as

Effect of surfactants on sol–gel transition of silk fibroin

  • Ji Hun Park
  • Min Hee Kim
  • Lim Jeong
  • Donghwan Cho
  • Oh Hyeong Kwon
  • Won Ho Park
Original Paper


In this study, various surfactants were added to control the gelation time of silk fibroin (SF) aqueous solution. The gelation behaviors of SF aqueous solution in the presence of surfactant were investigated with attenuated total reflectance infrared, SEM, and a viscometer. When surfactants other than chitooligosaccharide were added into an SF aqueous solution, the gelation time of the solution was decreased under the fixed conditions. Particularly, anionic surfactant was found to be more effective than non-ionic and cationic surfactants in accelerating the gelation of SF. In addition, the conformational changes of SF hydrogel with or without surfactant were investigated in a time-resolved manner using infrared spectroscopy. Conformational transitions of SF nanofibers from random coil to β-sheet forms were strongly dependent on the inherent properties of surfactant, and on the different interactions between surfactant and SF molecules in aqueous solution. This approach to controlling the gelation of SF aqueous solution by the surfactant, and to monitoring their conformational changes on a real-time scale, may be critical in the design and tailoring of SF hydrogels useful for biomedical applications.


Silk fibroin Gelation time Sol–gel transition Surfactant 



This work was supported by the National Research Foundation of Korea (NRF-2012M2A2A6035747).


  1. 1.
    Numata K, Katashima T, Sakai T (2011) State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromolecules 12:2137–2144CrossRefGoogle Scholar
  2. 2.
    West JL, Hubbell JA (1995) Photopolymerized hydrogel materials for drug-delivery applications. React Polym 25:139–147CrossRefGoogle Scholar
  3. 3.
    Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29:1054–1064CrossRefGoogle Scholar
  4. 4.
    de Vos P, Bucko M, Gemeiner P, Navratil M, Svitel J, Faas M, Strand BL, Skjak-Braek G, Morch YA, Vikartovska A, Lacik I, Kollarikova G, Orive G, Poncelet D, Pedraz JL, Ansorge-Schumacher MB (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30:2559–2570CrossRefGoogle Scholar
  5. 5.
    Kundu J, Poole-Warren LA, Martens P, Kundu SC (2012) Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs. Acta Biomater 8:1720–1729CrossRefGoogle Scholar
  6. 6.
    Li M, Lu S, Wu Z, Tan K, Minoura N, Kuga S (2002) Structure and properties of silk fibroin-poly(vinyl alcohol) gel. Int J Biol Macromol 30:89–94CrossRefGoogle Scholar
  7. 7.
    Takeshita H, Ishida K, Kamiishi Y, Yoshii F, Kume T (2000) Production of fine powder from silk by radiation. Macromol Mater Eng 283:126–131CrossRefGoogle Scholar
  8. 8.
    Yao J, Masuda H, Zhao C, Asakura T (2002) Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules 35:6–9CrossRefGoogle Scholar
  9. 9.
    Putthanarat S, Zarkoob S, Magoshi J, Chen JA, Eby RK, Stone M, Adams WW (2002) Effect of processing temperature on the morphology of silk membranes. Polymer 43:3405–3413CrossRefGoogle Scholar
  10. 10.
    Lee KY, Kong SJ, Park WH, Ha WS, Kwon IC (1998) Effect of surface properties on the antithrombogenicity of silk fibroin/S-carboxymethyl kerateine blend films. J Biomater Sci Polym Ed 9:905–914CrossRefGoogle Scholar
  11. 11.
    Draelos ZD (2000) Novel topical therapies in cosmetic dermatology. Curr Probl Dermatol 12:235–239CrossRefGoogle Scholar
  12. 12.
    Zhang YF, Wu CT, Luo T, Li S, Cheng XR, Miron RJ (2012) Synthesis and inflammatory responses of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration. Bone 51:704–713CrossRefGoogle Scholar
  13. 13.
    Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007CrossRefGoogle Scholar
  14. 14.
    Park WH, Jeong L, Yoo DI, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 45:7151–7157CrossRefGoogle Scholar
  15. 15.
    Cai K, Yao K, Cui Y, Yang Z, Li X, Xie H, Qing T, Gao L (2002) Influence of different surface modification treatments on poly(D, L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro. Biomaterials 23:1603–1611CrossRefGoogle Scholar
  16. 16.
    Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, Qing T, Gao L (2002) Poly(D, L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 23:1153–1160CrossRefGoogle Scholar
  17. 17.
    Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297CrossRefGoogle Scholar
  18. 18.
    Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan DL (2004) Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res 71A:528–537CrossRefGoogle Scholar
  19. 19.
    Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P, Kaplan DL (2006) Mechanism of silk fibroin sol-gel transition. J Phys Chem B 110:21630–21638CrossRefGoogle Scholar
  20. 20.
    Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792CrossRefGoogle Scholar
  21. 21.
    Nagarkar S, Nicolai T, Chassenieux C, Lele A (2010) Structure and gelation mechanism of silk hydrogels. Phys Chem Chem Phys 12:3834–3844CrossRefGoogle Scholar
  22. 22.
    Yucel T, Cebe P, Kaplan DL (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97:2044–2050CrossRefGoogle Scholar
  23. 23.
    Li XG, Wu LY, Huang MR, Shao HL, Hu XC (2008) Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers 89:497–505CrossRefGoogle Scholar
  24. 24.
    Anghel DF, Winnik FM, Galatanu N (1999) Effect of the surfactant head group length on the interactions between polyethylene glycol monononylphenyl ethers and poly(acrylic acid). Colloids Surf A Physicochem Eng Asp 149:339–345CrossRefGoogle Scholar
  25. 25.
    Chen X, Knight DP, Shao Z, Vollrath F (2001) Regenerated Bombyx silk solutions studied with rheometry and FTIR. Polymer 42:9969–9974CrossRefGoogle Scholar
  26. 26.
    Mathur AB, Tonelli A, Rathke T, Hudson S (1997) The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films. Biopolymers 42:61–74CrossRefGoogle Scholar
  27. 27.
    Hu X, Kaplan DL, Cebe P (2008) Dynamic protein–water relationships during beta-sheet formation. Macromolecules 41:3939–3948CrossRefGoogle Scholar
  28. 28.
    Wu X, Hou J, Li M, Wang J, Kaplan DL, Lu S (2012) Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater 8:2185–2192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ji Hun Park
    • 1
  • Min Hee Kim
    • 1
  • Lim Jeong
    • 1
  • Donghwan Cho
    • 2
  • Oh Hyeong Kwon
    • 2
  • Won Ho Park
    • 1
  1. 1.Department of Textile Engineering, College of EngineeringChungnam National UniversityDaejeonSouth Korea
  2. 2.Department of Polymer Science and EngineeringKumoh Institute of TechnologyKumi citySouth Korea

Personalised recommendations