Journal of Sol-Gel Science and Technology

, Volume 71, Issue 2, pp 303–312 | Cite as

Influence of the substrate type on the microstructural, optical and electrical properties of sol–gel ITO films

  • L. Predoana
  • S. Preda
  • M. Nicolescu
  • M. Anastasescu
  • J. M. Calderon-Moreno
  • M. Duta
  • M. Gartner
  • M. Zaharescu
Original Paper


Indium tin oxide (ITO) is recognized as the best transparent and conductive material [transparent conducting oxide (TCO)] until now and its properties are dependent on the preparation method. In the present work ITO films with In:Sn atomic ratio 9:1 were prepared by a sol–gel route on different substrates (microscope glass slides, microscope glass covered with one layer of SiO2 and Si wafers) for TCO applications. The multilayer ITO films were obtained by successive deposition by the dip-coating method and the films were characterized from the structural, morphological, optical, and electrical points of view using X-ray diffraction, scanning electron microscopy, atomic force microscopy, spectroscopic ellipsometry and by Hall effect measurements, respectively. The results showed that the thickness, optical constants and carrier numbers depend strongly on the type of substrate, number of deposited layers and sol concentration. The optical properties of ITO films are closely related to their electrical properties. The enhancement of the conductivity was possible with the increase of crystallite size (which occurred after thermal treatment) and with the reduction of surface roughness.


ITO film Sol–gel process Microstructure, optical and electrical properties 



This work was supported by the Romanian PN-II-ID-PCE-2011-3-0446 Project and by EU (ERDF) and Romanian Government that allowed for acquisition of the research infrastructure under POS-CCE O 2.2.1 Project INFRANANOCHEM—Nr. 19/01.03.2009.


  1. 1.
    Lunt RR, Bulovic V (2011) Appl Phys Lett 98:113305CrossRefGoogle Scholar
  2. 2.
    Tien WC, Chu AK (2014) Sol Energ Mater Sol C 120:18–22CrossRefGoogle Scholar
  3. 3.
    Furukawa K, Terasaka Y, Ueda H, Matsumura M (1997) Synth Met 91(1–3):99–101CrossRefGoogle Scholar
  4. 4.
    Li Z-H, Cho E-S, Kwon SJ (2010) Appl Surf Sci 257(3):776–780CrossRefGoogle Scholar
  5. 5.
    Celik E, Aybarc U, Ebeoglugil MF, Birlik I, Culha O (2009) J Sol–Gel Sci Technol 50:337–347CrossRefGoogle Scholar
  6. 6.
    Sierros KA, Morris NJ, Kukureka SN, Cairns DR (2009) Wear 267(1–4):625–631CrossRefGoogle Scholar
  7. 7.
    Ahn MH, Cho E-S, Kwon SJ (2011) Appl Surf Sci 258:1242–1248CrossRefGoogle Scholar
  8. 8.
    Houng B, Lin SL, Chen SW, Wang A (2011) Ceram Int 37:3397–3403CrossRefGoogle Scholar
  9. 9.
    Lee CJ, Lin HK, Li CH, Chen LX, Lee CC, Wu CW, Huang JC (2012) Thin Solid Films 522:330–335CrossRefGoogle Scholar
  10. 10.
    Manavizadeh N, Boroumand FA, Asl-Soleimani E, Raissi F, Bagherzadeh S, Khodayari A, Rasouli MA (2009) Thin Solid Films 517:2324–2327CrossRefGoogle Scholar
  11. 11.
    Song S, Yang T, Liu J, Xin Y, Li Y, Han S (2011) Appl Surf Sci 257:7061–7064CrossRefGoogle Scholar
  12. 12.
    Stroescu H, Anastasescu M, Preda S, Nicolescu M, Stoica M, Stefan N, Kampylafka V, Aperathitis E, Modreanu M, Zaharescu M, Gartner M (2013) Thin Solid Films 541:121–126CrossRefGoogle Scholar
  13. 13.
    Wasa K, Hayakawa S (1991) Handbook of sputter deposition technology. Noyes Publications, NJGoogle Scholar
  14. 14.
    Facchetti A, Marks TJ (2010) Transparent electronics: from synthesis to applications. Wiley, New YorkCrossRefGoogle Scholar
  15. 15.
    Ginley DS, Hosono H, Paine DC (2010) Handbook of transparent conductors. Springer, New YorkGoogle Scholar
  16. 16.
    Rozati SM, Ganj T (2004) Renew Energy 29(10):1671–1676CrossRefGoogle Scholar
  17. 17.
    El Rhaleb H, Benamar E, Rami M, Roger JP, Hakam A, Ennaoui A (2002) Appl Surf Sci 201(1–4):138–145CrossRefGoogle Scholar
  18. 18.
    Bisht H, Eun H-T, Mehrtens A, Aegerter MA (1999) Thin Solid Films 351:109–114CrossRefGoogle Scholar
  19. 19.
    Madhi I, Saadoun M, Bessais B (2012) Procedia Eng 47:192–195CrossRefGoogle Scholar
  20. 20.
    Mbarek H, Saadoun M, Bessais B (2006) Mater Sci Eng C 26(2–3):500–504CrossRefGoogle Scholar
  21. 21.
    Meng L-J, Gao J, Silva RA, Song S (2008) Thin Solid Films 516:5454–5459CrossRefGoogle Scholar
  22. 22.
    Zhinong Y, Yuqiong L, Fan X, Zhiwei Z, Wei X (2009) Thin Solid Films 517:5395–5398CrossRefGoogle Scholar
  23. 23.
    Okuya M, Ito N, Shiozaki K (2007) Thin Solid Films 515:8656–8659CrossRefGoogle Scholar
  24. 24.
    Fallah HR, Varnamkhasti MG, Vahid MJ (2010) Renew Energy 35:1527–1530CrossRefGoogle Scholar
  25. 25.
    Senthilkumar V, Vickraman P, Jayachandran M, Sanjeeviraja C (2010) Vacuum 84:864–869CrossRefGoogle Scholar
  26. 26.
    Stoica TF, Stoica TA, Vanca V, Lakatos E, Zaharescu M (1999) Thin Solid Films 348:273–278CrossRefGoogle Scholar
  27. 27.
    Stoica TF, Stoica TA, Zaharescu M, Popescu M, Sava F, Popescu-Pogrion N, Frunză L (2000) J Optoelectron Adv Mater 2:684–688Google Scholar
  28. 28.
    Alam MJ, Cameron DC (2000) Thin Solid Films 377:455–459CrossRefGoogle Scholar
  29. 29.
    Stoica TF, Gartner M, Losurdo M, Teodorescu VS, Blanchin M, Stoica T, Zaharescu M (2004) Thin Solid Films 455–456:509–512CrossRefGoogle Scholar
  30. 30.
    Biswas PK, De A, Dua LK, Chkoda L (2006) Appl Surf Sci 253:1953–1959CrossRefGoogle Scholar
  31. 31.
    Beaurain A, Luxembourg D, Dufour C, Koncar V, Capoen B, Bouazaoui M (2008) Thin Solid Films 516:4102–4106CrossRefGoogle Scholar
  32. 32.
    Valencia HY, Moreno LC, Ardila AM (2008) Microelectron J 39:1356–1357CrossRefGoogle Scholar
  33. 33.
    Prodi-Schwab A, Luthe Th, Jahn R, Herbig B, Lobmann P (2008) J Sol–Gel Sci Technol 47:68–73CrossRefGoogle Scholar
  34. 34.
    Soliemana A, Zayeda MK, Alamria SN, Al-Dahoudib N, Aegerter MA (2012) Mater Chem Phys 134:127–132CrossRefGoogle Scholar
  35. 35.
    Liu J, Wu D, Zhang N, Wang Y (2010) Rare Met 29(2):143–148CrossRefGoogle Scholar
  36. 36.
    Kittel C (1996) Introduction to solid state physics. Wiley, New YorkGoogle Scholar
  37. 37.
    Van Meerssche M, Feneau-Dupont J (1984) Introduction à la cristallographie et à la chimie structurale. Editions Peeters, LeuvenGoogle Scholar
  38. 38.
    Su C, Sheu TK, Chang YT, Wan MA, Feng MC, Hung WC (2005) Synth Met 153:9–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • L. Predoana
    • 1
  • S. Preda
    • 1
  • M. Nicolescu
    • 1
  • M. Anastasescu
    • 1
  • J. M. Calderon-Moreno
    • 1
  • M. Duta
    • 1
  • M. Gartner
    • 1
  • M. Zaharescu
    • 1
  1. 1.“Ilie Murgulescu” Institute of Physical ChemistryRomanian AcademyBucharestRomania

Personalised recommendations