Journal of Sol-Gel Science and Technology

, Volume 71, Issue 2, pp 313–323 | Cite as

Facile synthesis and luminescence properties of europium(III)-doped silica nanotubes

  • Fei Gao
  • Ye Sheng
  • Yanhua Song
  • Keyan Zheng
  • Chunming Lin
  • Hui Zhang
  • Qisheng Huo
  • Haifeng Zou
Original Paper


Photoluminescent nanomaterials had emerged as an amazing field in a wide range of applications during the past few decades. In this article, fibrous europium tartrates and photoluminescent silica nanotubes were conveniently synthesized by using sol–gel method, in which europium ions entered silica matrix. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, fourier transform infrared spectra, energy-dispersive X-ray spectroscopy and photoluminescence (PL) spectra analysis were used to characterize the growth, structure, morphology and optical property of the products. The results indicated that europium tartrates nanofibers as a template can transform tetraethylorthosilicate into silica nanotubes effectively. Meanwhile, europium(III) was transferred from the fibers to the tubes successfully. A hard template mechanism was proposed to explain the formation process of europium(III)-doped silica nanotubes. Moreover, different morphologies of silica-based nanomaterials were obtained due to varying NH4OH addition or stirring time. PL spectra from nanofiber and nanotube show a typical emission of europium(III), and 13 % is the quenching concentration of europium(III) in silica matrix for this system. The novel silica nanotubes can be applied potentially in optical and biological areas.


Tartaric acid Template Europium Eu3+-doped silica nanotubes Sol–gel Photoluminescence 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 51272085 and 21171066), the key technology and equipment of efficient utilization of oil shale resources (No: OSR-05) and the Opening Research Funds Projects of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and College of Chemistry, Jilin University (2013–27).


  1. 1.
    Jung JH, Yoshida K, Shimizu T (2002) Creation of novel double-helical silica nanotubes using binary gel system. Langmuir 18(23):8724–8727CrossRefGoogle Scholar
  2. 2.
    Chao M-C, Chang C-H, Lin H-P, Tang C-Y, Lin C-Y (2009) Morphological control on SBA-15 mesoporous silicas via a slow self-assembling rate. J Mater Sci 44(24):6453–6462CrossRefGoogle Scholar
  3. 3.
    Yang Z, Zhang Y, Liu D, Nie E, Jiao Z, Jin Y, He Y, Gong M, Sun X (2010) Selective synthesis of SiO2 NWs on Si substrate and their adjustable photoluminescence. J Non-Cryst Solids 356(41):2207–2210CrossRefGoogle Scholar
  4. 4.
    Jin Y, Lohstreter S, Pierce DT, Parisien J, Wu M, Hall C, Zhao JX (2008) Silica nanoparticles with continuously tunable sizes: synthesis and size effects on cellular contrast imaging. Chem Mater 20(13):4411–4419. doi: 10.1021/cm8007478 CrossRefGoogle Scholar
  5. 5.
    Moran CE, Hale GD, Halas NJ (2001) Synthesis and characterization of lanthanide-doped silica microspheres. Langmuir 17(26):8376–8379CrossRefGoogle Scholar
  6. 6.
    Wang B, Chen JS, Wu HB, Wang Z, Lou XW (2011) Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133(43):17146–17148CrossRefGoogle Scholar
  7. 7.
    Clavier G, Pozzo J, Bouas-Laurent H, Liere C, Roux C, Sanchez C (2000) Organogelators for making porous sol–gel derived silica at two different length scales. J Mater Chem 10(7):1725–1730CrossRefGoogle Scholar
  8. 8.
    Vos W, Polman A (2001) Optical probes inside photonic crystals. MRS Bull 26(8):642–646CrossRefGoogle Scholar
  9. 9.
    Dong W, Zhao H, Li C, Mei J, Chen B, Tang W, Shi Z, Feng S (2011) Hetero-nanostructure of silver nanoparticles on MO x (M=Mo, Ti and Si) and their applications. Sci China Chem 54(6):865–875CrossRefGoogle Scholar
  10. 10.
    Han WS, Kang Y, Lee SJ, Lee H, Do Y, Lee Y-A, Jung JH (2005) Fabrication of color-tunable luminescent silica nanotubes loaded with functional dyes using a sol–gel cocondensation method. J Phys Chem B 109(44):20661–20664. doi: 10.1021/jp0547156 CrossRefGoogle Scholar
  11. 11.
    Okamoto K, Shook CJ, Bivona L, Lee SB, English DS (2004) Direct observation of wetting and diffusion in the hydrophobic interior of silica nanotubes. Nano Lett 4(2):233–239CrossRefGoogle Scholar
  12. 12.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRefGoogle Scholar
  13. 13.
    Satishkumar BC, Govindaraj A, Nath M, Rao CNR (2000) Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem 10(9):2115–2119. doi: 10.1039/B002868L CrossRefGoogle Scholar
  14. 14.
    Yin Y, Lu Y, Sun Y, Xia Y (2002) Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2(4):427–430CrossRefGoogle Scholar
  15. 15.
    Llusar M, Sanchez C (2008) Inorganic and hybrid nanofibrous materials templated with organogelators†. Chem Mater 20(3):782–820CrossRefGoogle Scholar
  16. 16.
    Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746. doi: 10.1021/cm960166s CrossRefGoogle Scholar
  17. 17.
    Stręk W, Dereń P, Łukowiak E, Hanuza J, Drulis H, Bednarkiewicz A, Gaishun V (2001) Spectroscopic studies of chromium-doped silica sol–gel glasses. J Non-Cryst Solids 288(1):56–65CrossRefGoogle Scholar
  18. 18.
    dos Santos CM, Harte AJ, Quinn SJ, Gunnlaugsson T (2008) Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coord Chem Rev 252(23):2512–2527CrossRefGoogle Scholar
  19. 19.
    Bottrill M, Kwok L, Long NJ (2006) Lanthanides in magnetic resonance imaging. Chem Soc Rev 35(6):557–571CrossRefGoogle Scholar
  20. 20.
    Adachi C, Baldo MA, Forrest SR (2000) Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. J Appl Phys 87(11):8049–8055CrossRefGoogle Scholar
  21. 21.
    Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374CrossRefGoogle Scholar
  22. 22.
    Zhao D, Qin W, Wu C, Qin G, Zhang J, Lü S (2004) Laser selective spectroscopy of europium complex embedded in colloidal silica spheres. Chem Phys Lett 388(4):400–405CrossRefGoogle Scholar
  23. 23.
    Qiao Y, Chen H, Lin Y, Yang Z, Cheng X, Huang J (2011) Photoluminescent lanthanide-doped silica nanotubes: sol–gel transcription from functional template. J Phys Chem C 115(15):7323–7330CrossRefGoogle Scholar
  24. 24.
    Gao F, Song Y, Sheng Y, Lin C, Huo Q, Zou H (2013) Growth, structure and optical properties of tartaric acid-templated silica nanotubes by sol–gel method. J Sol–Gel Sci Technol 68(2):204–212CrossRefGoogle Scholar
  25. 25.
    Lin C, Song Y, Gao F, Zhang H, Sheng Y, Zheng K, Shi Z, Xu X, Zou H (2014) Synthesis and luminescence properties of Eu3+-doped silica nanorods based on the sol–gel process. J Sol–Gel Sci Technol 69(3):536–543Google Scholar
  26. 26.
    Li Y, Ge M, Li J, Wang J, Zhang H (2011) Synthesis of mesoporous Eu2O3 microspheres and Eu2O3 nanoparticle-wires as well as their optical properties. CrystEngComm 13(2):637–641CrossRefGoogle Scholar
  27. 27.
    Guo Y, Dou W, Zhou X, Liu W, Qin W, Zang Z, Zhang H, Wang D (2009) Influence of conformational flexibility on self-assembly and luminescence properties of lanthanide coordination polymers with flexible exo-bidentate biphenol derivatives. Inorg Chem 48(8):3581–3590CrossRefGoogle Scholar
  28. 28.
    Thomas V, Jose G, Jose G, Biju P, Rajagopal S, Unnikrishnan N (2005) Structural evolution and fluorescence properties of Dy3+: silica matrix. J Sol–Gel Sci Technol 33(3):269–274CrossRefGoogle Scholar
  29. 29.
    Banerjee S, Datta A (2009) Photoluminescent silica nanotubes and nanodisks prepared by the reverse micelle sol–gel method. Langmuir 26(2):1172–1176CrossRefGoogle Scholar
  30. 30.
    Uchino T, Kurumoto N, Sagawa N (2006) Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials. Phys Rev B 73(23):233203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fei Gao
    • 1
    • 2
  • Ye Sheng
    • 1
  • Yanhua Song
    • 1
  • Keyan Zheng
    • 1
  • Chunming Lin
    • 1
  • Hui Zhang
    • 1
  • Qisheng Huo
    • 3
  • Haifeng Zou
    • 1
  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Chemistry and Chemical Engineering CollegeInner Mongolia University for the NationalitiesTongliaoPeople’s Republic of China
  3. 3.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations