Skip to main content
Log in

Ionic silsesquioxane film immobilized on silica applied in the development of carbon paste electrode for determination of methyl parathion

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A mesoporous silica-based hybrid material composed of silica xerogel modified with an ionic silsesquioxane, which contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group, was obtained. The silsesquioxane film is highly dispersed on the surface. This hybrid material was utilized to develop a carbon paste electrode (CPE) for determination of methyl parathion. Transmission FTIR, elemental analysis and N2 adsorption–desorption isotherms were used for characterization of the material. The electrochemical behavior of methyl parathion was evaluated by cyclic voltammetry and differential pulse voltammetry. It was observed a linear response to methyl parathion in the concentration range from 1.25 × 10−7 to 2.56 × 10−6 mol L−1 by employing the carbon paste electrode, in Britton–Robinson buffer solution (pH 6). The achieved detection limit (3 SD of the blank divided by the slope of calibration curve) was 0.013 µmol L−1 and sensitivity was 6.3 µA µmol L−1. This result shows the potentiality of this electrode for application as electrochemical sensor for methyl parathion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rodrigues SR, Caldeira C, Castro BB, Gonçalves F, Nunes B, Antunes SC (2011) Pestic Biochem Physiol 99:181–188

    Article  Google Scholar 

  2. Frenich AG, Vidal JLM, Sicilia ADC, Rodríguez MJG, Bolaños PP (2006) Anal Chim Acta 558:42–52

    Article  Google Scholar 

  3. Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R (2009) Biosens Bioelectron 25:832–838

    Article  Google Scholar 

  4. Videira RA, Antunes-Madeira AM, Loopes VICF, Madeira VMC (2011) Biochim Biophys Acta 1511:360–368

    Article  Google Scholar 

  5. Reddy KG, Madhavi G, Swamy BEK, Reddy S, Reddy AVB, Madhavi V (2013) J Mol Liq 180:26–30

    Article  Google Scholar 

  6. Vicente A, Yolanda P (2004) Trends Anal Chem 23:772–789

    Article  Google Scholar 

  7. Hernandez F, Sancho JV, Pozo OJ (2005) Bioanal Chem 382:934–946

    Article  Google Scholar 

  8. Nousiainen M, Perakorpi K, Sillanpaa M (2007) Talanta 72:984–990

    Article  Google Scholar 

  9. Kumaravel A, Chandrasekaran M (2010) J Electroanal Chem 638:231–235

    Article  Google Scholar 

  10. Tcheumi HL, Tonle IK, Ngameni E, Walcarius A (2010) Talanta 81:972–979

    Article  Google Scholar 

  11. Liu G, Lin Y (2005) Electrochem Commun 7:339–343

    Article  Google Scholar 

  12. Yazhen W, Hongwin Q, Siqian H, Junhui X (2010) Sens Actuators B 147:587–592

    Article  Google Scholar 

  13. Jeyapragasam T, Saraswathi R, Chen S-M, Lou B-S (2013) Int J Electrochem Sci 8:12353–12366

    Google Scholar 

  14. Zeng Y, Yu D, Yu Y, Zhou T, Shi G (2012) J Hazard Mater 217–218:315–322

    Article  Google Scholar 

  15. Ma J-C, Zhang W-D (2011) Microchim Acta 175:309–314

    Article  Google Scholar 

  16. Zhao L, Zhao F, Zeng B (2013) Sens Actuators B 176:818–824

    Article  Google Scholar 

  17. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Anal Chim Acta 735:37–45

    Article  Google Scholar 

  18. Raghu P, Swamy BEK, Reddy TM, Chandrashekar BN, Reddaiah K (2012) Bioelectrochemistry 83:19–24

    Article  Google Scholar 

  19. Vuk AS, Jovanovski V, Pollet-Villard A, Jerman I, Orel B (2008) Solar Energy Mater Solar Cells 92:126–135

    Article  Google Scholar 

  20. Gushikem Y, Benvenutti EV, Kholin Y (2008) Pure Appl Chem 80:1593–1611

    Article  Google Scholar 

  21. Benvenutti EV, Moro CC, Costa TMH, Gallas MR (2009) Quim Nova 32:1926–1933

    Article  Google Scholar 

  22. Lucho AMS, Pissetti FL, Gushikem Y (2004) J Colloid Interface Sci 275:251–256

    Article  Google Scholar 

  23. Arenas LT, Gay DSF, Moro CC, Dias SLP, Azambuja DS, Costa TMH, Benvenutti EV, Gushikem Y (2008) Micropor Mesopor Mater 112:273–283

    Article  Google Scholar 

  24. Arguello J, Magosso HA, Landers R, Gushikem Y (2008) J Electroanal Chem 617:45–52

    Article  Google Scholar 

  25. Magosso HA, Luz RCS, Gushikem Y (2010) Electroanalysis 22:216–222

    Article  Google Scholar 

  26. de Menezes EW, Nunes MR, Arenas LT, Dias SLP, Garcia ITS, Gushikem Y, Costa TMH, Benvenutti EV (2012) J Solid State Electrochem 16:3703–3713

    Article  Google Scholar 

  27. Tamborim SM, Azambuja DS, Arenas LT, Costa TMH, Benvenutti EV (2008) Patente PI 0800519-2 (in Portuguese)

  28. Nunes MR, Gushikem Y, Landers R, Dupont J, Costa TMH, Benvenutti EV (2012) J Sol-Gel Sci Technol 63:258–265

    Article  Google Scholar 

  29. Arenas LT, Dias SLP, Moro CC, Costa TMH, Benvenutti EV, Lucho AMS, Gushikem Y (2006) J Colloid Interface Sci 297:244–250

    Article  Google Scholar 

  30. Foschiera JL, Pizzolato TM, Benvenutti EV (2001) J Braz Chem Soc 12:159–164

    Article  Google Scholar 

  31. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, chapters 3 and 4. Academic, London

    Google Scholar 

  32. Arenas LT, Langaro A, Gushikem Y, Moro CC, Benvenutti EV, Costa TMH (2003) J Sol–Gel Sci Technol 28:51–56

    Article  Google Scholar 

  33. Ying JY, Benziger JB, Navrotsky A (1993) J Am Ceram Soc 76:2571–2582

    Article  Google Scholar 

  34. Pavan FA, Franken L, Moreira CA, Costa TMH, Benvenutti EV, Gushikem Y (2001) J Colloid Interface Sci 241:413–416

    Article  Google Scholar 

  35. Yang S, Luo S, Liu C, Wei W (2012) Colloids Surf B Biointerfaces 96:75–79

    Article  Google Scholar 

  36. Arenas LT, Villis PCM, Arguello J, Landers R, Benvenutti EV, Gushikem Y (2010) Talanta 83:241–248

    Article  Google Scholar 

  37. Dong J, Wang X, Qiao F, Liu P, Ai S (2013) Sens Actuators B 186:774–780

    Article  Google Scholar 

  38. Li C, Wang Z, Zhan G (2011) Colloids Surf B 82:40–45

    Article  Google Scholar 

  39. Xue R, Kang TF, Lu LP, Cheng SY (2012) Appl Surf Sci 258:6040–6045

    Article  Google Scholar 

  40. Vidotti C, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT (2011) J Braz Chem 22:3–20

    Article  Google Scholar 

  41. Dahlin AB, Dielacher B, Rajendran P, Sugihara K, Sannomiya T, Zenobi-Wong M, Vörös J (2012) Anal Bioanal Chem 402:1773–1784

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul) and CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior) for their financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edilson Valmir Benvenutti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldas, E.M., de Menezes, E.W., Pizzolato, T.M. et al. Ionic silsesquioxane film immobilized on silica applied in the development of carbon paste electrode for determination of methyl parathion. J Sol-Gel Sci Technol 72, 282–289 (2014). https://doi.org/10.1007/s10971-014-3367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3367-8

Keywords

Navigation