Journal of Sol-Gel Science and Technology

, Volume 72, Issue 2, pp 282–289 | Cite as

Ionic silsesquioxane film immobilized on silica applied in the development of carbon paste electrode for determination of methyl parathion

  • Elisangela Muncinelli Caldas
  • Eliana Weber de Menezes
  • Tânia Mara Pizzolato
  • Silvio Luis Pereira Dias
  • Tania Maria Haas Costa
  • Leliz Ticona Arenas
  • Edilson Valmir Benvenutti
Original Paper


A mesoporous silica-based hybrid material composed of silica xerogel modified with an ionic silsesquioxane, which contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group, was obtained. The silsesquioxane film is highly dispersed on the surface. This hybrid material was utilized to develop a carbon paste electrode (CPE) for determination of methyl parathion. Transmission FTIR, elemental analysis and N2 adsorption–desorption isotherms were used for characterization of the material. The electrochemical behavior of methyl parathion was evaluated by cyclic voltammetry and differential pulse voltammetry. It was observed a linear response to methyl parathion in the concentration range from 1.25 × 10−7 to 2.56 × 10−6 mol L−1 by employing the carbon paste electrode, in Britton–Robinson buffer solution (pH 6). The achieved detection limit (3 SD of the blank divided by the slope of calibration curve) was 0.013 µmol L−1 and sensitivity was 6.3 µA µmol L−1. This result shows the potentiality of this electrode for application as electrochemical sensor for methyl parathion.


Charged organosilanes Sol–gel Water soluble polymers Charged silsesquioxane coating Organophosphorous pesticides Chemically modified electrodes 



The authors are grateful to CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul) and CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior) for their financial support and fellowships.


  1. 1.
    Rodrigues SR, Caldeira C, Castro BB, Gonçalves F, Nunes B, Antunes SC (2011) Pestic Biochem Physiol 99:181–188CrossRefGoogle Scholar
  2. 2.
    Frenich AG, Vidal JLM, Sicilia ADC, Rodríguez MJG, Bolaños PP (2006) Anal Chim Acta 558:42–52CrossRefGoogle Scholar
  3. 3.
    Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R (2009) Biosens Bioelectron 25:832–838CrossRefGoogle Scholar
  4. 4.
    Videira RA, Antunes-Madeira AM, Loopes VICF, Madeira VMC (2011) Biochim Biophys Acta 1511:360–368CrossRefGoogle Scholar
  5. 5.
    Reddy KG, Madhavi G, Swamy BEK, Reddy S, Reddy AVB, Madhavi V (2013) J Mol Liq 180:26–30CrossRefGoogle Scholar
  6. 6.
    Vicente A, Yolanda P (2004) Trends Anal Chem 23:772–789CrossRefGoogle Scholar
  7. 7.
    Hernandez F, Sancho JV, Pozo OJ (2005) Bioanal Chem 382:934–946CrossRefGoogle Scholar
  8. 8.
    Nousiainen M, Perakorpi K, Sillanpaa M (2007) Talanta 72:984–990CrossRefGoogle Scholar
  9. 9.
    Kumaravel A, Chandrasekaran M (2010) J Electroanal Chem 638:231–235CrossRefGoogle Scholar
  10. 10.
    Tcheumi HL, Tonle IK, Ngameni E, Walcarius A (2010) Talanta 81:972–979CrossRefGoogle Scholar
  11. 11.
    Liu G, Lin Y (2005) Electrochem Commun 7:339–343CrossRefGoogle Scholar
  12. 12.
    Yazhen W, Hongwin Q, Siqian H, Junhui X (2010) Sens Actuators B 147:587–592CrossRefGoogle Scholar
  13. 13.
    Jeyapragasam T, Saraswathi R, Chen S-M, Lou B-S (2013) Int J Electrochem Sci 8:12353–12366Google Scholar
  14. 14.
    Zeng Y, Yu D, Yu Y, Zhou T, Shi G (2012) J Hazard Mater 217–218:315–322CrossRefGoogle Scholar
  15. 15.
    Ma J-C, Zhang W-D (2011) Microchim Acta 175:309–314CrossRefGoogle Scholar
  16. 16.
    Zhao L, Zhao F, Zeng B (2013) Sens Actuators B 176:818–824CrossRefGoogle Scholar
  17. 17.
    Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Anal Chim Acta 735:37–45CrossRefGoogle Scholar
  18. 18.
    Raghu P, Swamy BEK, Reddy TM, Chandrashekar BN, Reddaiah K (2012) Bioelectrochemistry 83:19–24CrossRefGoogle Scholar
  19. 19.
    Vuk AS, Jovanovski V, Pollet-Villard A, Jerman I, Orel B (2008) Solar Energy Mater Solar Cells 92:126–135CrossRefGoogle Scholar
  20. 20.
    Gushikem Y, Benvenutti EV, Kholin Y (2008) Pure Appl Chem 80:1593–1611CrossRefGoogle Scholar
  21. 21.
    Benvenutti EV, Moro CC, Costa TMH, Gallas MR (2009) Quim Nova 32:1926–1933CrossRefGoogle Scholar
  22. 22.
    Lucho AMS, Pissetti FL, Gushikem Y (2004) J Colloid Interface Sci 275:251–256CrossRefGoogle Scholar
  23. 23.
    Arenas LT, Gay DSF, Moro CC, Dias SLP, Azambuja DS, Costa TMH, Benvenutti EV, Gushikem Y (2008) Micropor Mesopor Mater 112:273–283CrossRefGoogle Scholar
  24. 24.
    Arguello J, Magosso HA, Landers R, Gushikem Y (2008) J Electroanal Chem 617:45–52CrossRefGoogle Scholar
  25. 25.
    Magosso HA, Luz RCS, Gushikem Y (2010) Electroanalysis 22:216–222CrossRefGoogle Scholar
  26. 26.
    de Menezes EW, Nunes MR, Arenas LT, Dias SLP, Garcia ITS, Gushikem Y, Costa TMH, Benvenutti EV (2012) J Solid State Electrochem 16:3703–3713CrossRefGoogle Scholar
  27. 27.
    Tamborim SM, Azambuja DS, Arenas LT, Costa TMH, Benvenutti EV (2008) Patente PI 0800519-2 (in Portuguese)Google Scholar
  28. 28.
    Nunes MR, Gushikem Y, Landers R, Dupont J, Costa TMH, Benvenutti EV (2012) J Sol-Gel Sci Technol 63:258–265CrossRefGoogle Scholar
  29. 29.
    Arenas LT, Dias SLP, Moro CC, Costa TMH, Benvenutti EV, Lucho AMS, Gushikem Y (2006) J Colloid Interface Sci 297:244–250CrossRefGoogle Scholar
  30. 30.
    Foschiera JL, Pizzolato TM, Benvenutti EV (2001) J Braz Chem Soc 12:159–164CrossRefGoogle Scholar
  31. 31.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, chapters 3 and 4. Academic, LondonGoogle Scholar
  32. 32.
    Arenas LT, Langaro A, Gushikem Y, Moro CC, Benvenutti EV, Costa TMH (2003) J Sol–Gel Sci Technol 28:51–56CrossRefGoogle Scholar
  33. 33.
    Ying JY, Benziger JB, Navrotsky A (1993) J Am Ceram Soc 76:2571–2582CrossRefGoogle Scholar
  34. 34.
    Pavan FA, Franken L, Moreira CA, Costa TMH, Benvenutti EV, Gushikem Y (2001) J Colloid Interface Sci 241:413–416CrossRefGoogle Scholar
  35. 35.
    Yang S, Luo S, Liu C, Wei W (2012) Colloids Surf B Biointerfaces 96:75–79CrossRefGoogle Scholar
  36. 36.
    Arenas LT, Villis PCM, Arguello J, Landers R, Benvenutti EV, Gushikem Y (2010) Talanta 83:241–248CrossRefGoogle Scholar
  37. 37.
    Dong J, Wang X, Qiao F, Liu P, Ai S (2013) Sens Actuators B 186:774–780CrossRefGoogle Scholar
  38. 38.
    Li C, Wang Z, Zhan G (2011) Colloids Surf B 82:40–45CrossRefGoogle Scholar
  39. 39.
    Xue R, Kang TF, Lu LP, Cheng SY (2012) Appl Surf Sci 258:6040–6045CrossRefGoogle Scholar
  40. 40.
    Vidotti C, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT (2011) J Braz Chem 22:3–20CrossRefGoogle Scholar
  41. 41.
    Dahlin AB, Dielacher B, Rajendran P, Sugihara K, Sannomiya T, Zenobi-Wong M, Vörös J (2012) Anal Bioanal Chem 402:1773–1784CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Elisangela Muncinelli Caldas
    • 1
  • Eliana Weber de Menezes
    • 1
  • Tânia Mara Pizzolato
    • 1
  • Silvio Luis Pereira Dias
    • 1
  • Tania Maria Haas Costa
    • 1
  • Leliz Ticona Arenas
    • 1
  • Edilson Valmir Benvenutti
    • 1
  1. 1.LSS—Laboratório de Sólidos e Superfícies, Instituto de QuímicaUFRGSPorto AlegreBrazil

Personalised recommendations