Journal of Sol-Gel Science and Technology

, Volume 71, Issue 2, pp 254–259 | Cite as

A polyacrylamide gel route to different-sized CaTiO3 nanoparticles and their photocatalytic activity for dye degradation

  • Y. S. Huo
  • H. Yang
  • T. Xian
  • J. L. Jiang
  • Z. Q. Wei
  • R. S. Li
  • W. J. Feng
Original Paper


Calcium titanate (CaTiO3) nanoparticles with different average sizes were prepared by a polyacrylamide gel route, where the particle size was tailored by using different chelating agents. Scanning electron microscope observation shows that the samples prepared by using the chelating agents EDTA, acetic acid, tartaric acid, and citric acid have an average particle size of 25, 33, 36, and 55 nm, respectively. All the particles are regularly shaped like spheres. The bandgap energy of the four samples is measured to be 3.66–3.59 eV by ultraviolet (UV)–visible diffuse reflectance spectroscopy. The photocatalytic activity of the prepared CaTiO3 samples was evaluated by the degradation of methyl orange under 254 nm UV irradiation, revealing that they exhibit a good photocatalytic activity. Hydroxyl radicals are revealed, by the photoluminescence technique using terephthalic acid as a probe molecule, to be produced on the irradiated CaTiO3 nanoparticles and suggested to be the primary active species toward the dye degradation.


CaTiO3 nanoparticles Polyacrylamide gel route  Chelating agents Photocatalytic activity Hydroxyl radicals 



This work was supported by the National Natural Science Foundation of China (Grant No. 51262018) and the Hongliu Outstanding Talents Foundation of Lanzhou University of Technology (Grant No. J201205).


  1. 1.
    Mills A, Davies RH, Worsley D (1993) Chem Soc Rev 22:417CrossRefGoogle Scholar
  2. 2.
    Hoffmann MR, Martin ST, Choi WY, Bahneman DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  3. 3.
    Jang JS, Borse PH, Lee JS, Lim KT, Jung OS, Jeong ED, Bae JS, Kim HG (2011) Bull Korean Chem Soc 32:95CrossRefGoogle Scholar
  4. 4.
    Zhang H, Chen G, He X, Xu J (2012) J Alloys Compd 516:91CrossRefGoogle Scholar
  5. 5.
    Shi J, Guo L (2012) Prog Nat Sci Mater Int 22:592CrossRefGoogle Scholar
  6. 6.
    Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T (2010) Int J Hydrogen Energy 35:12428CrossRefGoogle Scholar
  7. 7.
    Sun W, Zhang S, Wang C, Liu Z, Mao Z (2007) Catal Lett 119:148CrossRefGoogle Scholar
  8. 8.
    Arbuj SS, Hawaldar RR, Varma S, Waghmode SB, Wani BN (2012) Sci Adv Mater 4:568CrossRefGoogle Scholar
  9. 9.
    Lemański K, Gągor A, Kurnatowska M, Pązik R, Dereń PJ (2011) J Solid State Chem 184:2713CrossRefGoogle Scholar
  10. 10.
    Fujiwara R, Sano H, Shimizu M, Kuwabara M (2009) J Lumin 129:231CrossRefGoogle Scholar
  11. 11.
    Oliveira LH, de Moura AP, Mazzo TM, Ramírez MA, Cavalcante LS, Antonio SG, Avansi W, Mastelaro VR, Longo E, Varela JA (2012) Mater Chem Phys 136:130CrossRefGoogle Scholar
  12. 12.
    Zhang F, Chena S, Lin C, Yin Y (2011) Appl Surf Sci 257:3092CrossRefGoogle Scholar
  13. 13.
    Tan S, Yang P, Li C, Wang W, Wang J, Zhang M, Jing X, Lin J (2010) Solid State Sci 12:624CrossRefGoogle Scholar
  14. 14.
    Cavalcantea LS, Marques VS, Sczancoski JC, Escote MT, Joya MR, Varela JA, Santos MRMC, Pizani PS, Longo E (2008) Chem Eng J 143:299CrossRefGoogle Scholar
  15. 15.
    Zhang X, Zhang J, Ren X, Wang X (2008) J Solid State Chem 181:393CrossRefGoogle Scholar
  16. 16.
    Yang X, Fu J, Jin C, Chen J, Liang C, Wu M, Zhou W (2010) J Am Chem Soc 132:14279CrossRefGoogle Scholar
  17. 17.
    Sun JH, Yang H (2014) Ceram Int 40:6399CrossRefGoogle Scholar
  18. 18.
    Yang H, Cao ZE, Shen X, Jiang JL, Wei ZQ, Dai JF, Feng WJ (2009) Mater Lett 63:665Google Scholar
  19. 19.
    Wang SF, Yang H, Xian T, Liu XQ (2011) Catal Commun 12:625CrossRefGoogle Scholar
  20. 20.
    Zhu A, Wang J, Du Y, Zhao D, Gao Q (2012) Phys B 407:849CrossRefGoogle Scholar
  21. 21.
    Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New YorkCrossRefGoogle Scholar
  22. 22.
    Andersen T, Haugen HK, Hotop H (1999) J Phys Chem Ref Data 28:1511CrossRefGoogle Scholar
  23. 23.
    Tachikawa T, Fujitsuka M, Majima T (2007) J Phys Chem C 111:5259CrossRefGoogle Scholar
  24. 24.
    Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) J Phys Chem C 111:7574CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Y. S. Huo
    • 2
  • H. Yang
    • 1
    • 2
  • T. Xian
    • 1
    • 2
  • J. L. Jiang
    • 2
  • Z. Q. Wei
    • 2
  • R. S. Li
    • 2
  • W. J. Feng
    • 2
  1. 1.State Key Laboratory of Gansu Advanced Non-ferrous Metal MaterialsLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations