Skip to main content
Log in

Fabrication and photocatalytic activities of SrTiO3 nanofibers by sol–gel assisted electrospinning

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SrTiO3 nanofibers were successfully prepared by a facile electrospinning method with subsequent calcination in air. These one dimensional nanostructures were characterized for the morphological, structural and optical properties by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–visible diffuse reflectance spectroscopy. The photocatalytic investigations showed that the SrTiO3 nanofibers possessed enhanced photocatalytic efficiency in photodegradation of rhodamine B and photocatalytic H2 evolution from water splitting under ultraviolet light irradiation, compared with the SrTiO3 nanoparticles and P25. The enhanced photocatalytic performance can be ascribed to the beneficial microstructure and more negative conduction band edge compared with P25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  2. Zhang J, Yu J, Jaroniec M, Gong JR (2012) Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett 12(9):4584–4589

    Article  Google Scholar 

  3. Shinde PS, Go GH, Lee WJ (2012) Facile growth of hierarchical hematite (α-Fe2O3) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting. J Mater Chem 22(21):10469–10471

    Article  Google Scholar 

  4. Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2(12):1231–1257

    Article  Google Scholar 

  5. Xu X, Yang G, Liang J, Ding S, Tang C, Yang H, Yan W, Yang G, Yu D (2014) Fabrication of one-dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity. J Mater Chem A 2(1):116–122

    Article  Google Scholar 

  6. Kuang Q, Yang S (2013) Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 5(9):3683–3690

    Article  Google Scholar 

  7. da Silva LF, Avansi W, Andres J, Ribeiro C, Moreira ML, Longo E, Mastelaro VR (2013) Long-range and short-range structures of cube-like shape SrTiO3 powders: microwave-assisted hydrothermal synthesis and photocatalytic activity. Phys Chem Chem Phys 15(29):12386–12393

    Article  Google Scholar 

  8. Takata T, Domen K (2009) Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. J Phys Chem C 113(45):19386–19388

    Article  Google Scholar 

  9. Zheng J-Q, Zhu Y-J, Xu J-S, Lu B-Q, Qi C, Chen F, Wu J (2013) Microwave-assisted rapid synthesis and photocatalytic activity of mesoporous Nd-doped SrTiO3 nanospheres and nanoplates. Mater Lett 100:62–65

    Article  Google Scholar 

  10. Zou JP, Zhang LZ, Luo SL, Leng LH, Luo XB, Zhang MJ, Luo Y, Guo GC (2012) Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. Int J Hydrogen Energy 37(22):17068–17077

    Article  Google Scholar 

  11. Chen L, Zhang S, Wang L, Xue D, Yin S (2009) Photocatalytic activity of Zr:SrTiO3 under UV illumination. J Cryst Growth 311(3):735–737

    Article  Google Scholar 

  12. Li H, Yin S, Wang Y, Sato T (2012) Blue fluorescence-assisted SrTi1−xCryO3 for efficient persistent photocatalysis. RSC Adv 2(8):3234–3236

    Article  Google Scholar 

  13. Kawasaki S, Akagi K, Nakatsuji K, Yamamoto S, Matsuda I, Harada Y, Yoshinobu J, Komori F, Takahashi R, Lippmaa M (2012) Elucidation of Rh-induced in-gap states of Rh: SrTiO3 visible-light-driven photocatalyst by soft X-ray spectroscopy and first-principles calculations. J Phys Chem C 116(46):24445–24448

    Article  Google Scholar 

  14. Nosaka Y, Takahashi S, Mitani Y, Qiu X, Miyauchi M (2012) Reaction mechanism of visible-light responsive Cu(II)-grafted Mo-doped SrTiO3 photocatalyst studied by means of ESR spectroscopy and chemiluminescence photometry. Appl Catal B 111–112:636–640

    Article  Google Scholar 

  15. Zhang J, Bang JH, Tang C, Kamat PV (2009) Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1):387–395

    Article  Google Scholar 

  16. Wei X, Xu G, Ren Z, Xu C, Shen G, Han G (2008) PVA-assisted hydrothermal synthesis of SrTiO3 nanoparticles with enhanced photocatalytic activity for degradation of RhB. J Am Ceram Soc 91(11):3795–3799

    Article  Google Scholar 

  17. Li H, Yin S, Wang Y, Sekino T, Lee SW, Sato T (2013) Roles of Cr3+ doping and oxygen vacancies in SrTiO3 photocatalysts with high visible light activity for NO removal. J Catal 297:65–69

    Article  Google Scholar 

  18. Sun T, Lu M (2013) Modification of SrTiO3 surface by nitrogen ion bombardment for enhanced photocatalysis. Appl Surf Sci 274:176–180

    Article  Google Scholar 

  19. Domen K, Kudo A, Onishi T, Kosugi N, Kuroda H (1986) Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J Phys Chem 90(2):292–295

    Article  Google Scholar 

  20. Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135(14):5441–5449

    Article  Google Scholar 

  21. Hara S, Yoshimizu M, Tanigawa S, Ni L, Ohtani B, Irie H (2012) Hydrogen and oxygen evolution photocatalysts synthesized from strontium titanate by controlled doping and their performance in two-step overall water splitting under visible light. J Phys Chem C 116(33):17458–17463

    Article  Google Scholar 

  22. Miseki Y, Fujiyoshi S, Gunji T, Sayama K (2013) Photocatalytic water splitting under visible light utilizing I3 /I and IO3 /I redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst. Catal Sci Technol 3(7):1750–1756

    Article  Google Scholar 

  23. Liu H, Dong H, Meng X, Wu F (2013) First-principles study on strontium titanate for visible light photocatalysis. Chem Phys Lett 555:141–144

    Article  Google Scholar 

  24. Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113(40):17536–17542

    Article  Google Scholar 

  25. Boumaza S, Boudjemaa A, Bouguelia A, Bouarab R, Trari M (2010) Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3. Appl Energy 87(7):2230–2236

    Article  Google Scholar 

  26. Liu P, Nisar J, Pathak B, Ahuja R (2012) Hybrid density functional study on SrTiO3 for visible light photocatalysis. Int J Hydrogen Energy 37:11611–11617

    Article  Google Scholar 

  27. Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S (2008) Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant. J Mol Catal A Chem 287(1–2):70–79

    Article  Google Scholar 

  28. Jia A, Liang X, Su Z, Zhu T, Liu S (2010) Synthesis and the effect of calcination temperature on the physical–chemical properties and photocatalytic activities of Ni, La codoped SrTiO3. J Hazard Mater 178(1–3):233–242

    Article  Google Scholar 

  29. Liu X, Bai H (2011) Liquid–solid reaction synthesis of SrTiO3 submicron-sized particles. Mater Chem Phys 127(1):21–23

    Article  Google Scholar 

  30. Kato H, Kobayashi M, Hara M, Kakihana M (2013) Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting. Catal Sci Technol 3(7):1733–1738

    Article  Google Scholar 

  31. da Silva LF, Maia LJQ, Bernardi MIB, Andrés JA, Mastelaro VR (2011) An improved method for preparation of SrTiO3 nanoparticles. Mater Chem Phys 125(1–2):168–173

    Article  Google Scholar 

  32. Guo J, Ouyang S, Li P, Zhang Y, Kako T, Ye J (2013) A new heterojunction Ag3PO4/Cr–SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation. Appl Catal B 134:286–292

    Article  Google Scholar 

  33. Li H, Yin S, Wang Y, Kobayashi M, Tezuka S, Kakihana M, Sato T (2012) Effect of carboxyl group on the visible-light photocatalytic activity of SrTiO3 nanoparticles. Res Chem Intermed 39(4):1615–1621

    Article  Google Scholar 

  34. Liu Y, Xie L, Li Y, Yang R, Qu J, Li Y, Li X (2008) Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J Power Sources 183(2):701–707

    Article  Google Scholar 

  35. Zheng Z, Huang B, Qin X, Zhang X, Dai Y (2011) Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity. J Colloid Interface Sci 358(1):68–72

    Article  Google Scholar 

  36. Dong W, Li X, Yu J, Guo W, Li B, Tan L, Li C, Shi J, Wang G (2012) Porous SrTiO3 spheres with enhanced photocatalytic performance. Mater Lett 67(1):131–134

    Article  Google Scholar 

  37. Dang F, K-i Mimura, Kato K, Imai H, Wada S, Haneda H, Kuwabara M (2011) Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method. CrystEngComm 13(11):3878–3883

    Article  Google Scholar 

  38. Xu H, Wei S, Wang H, Zhu M, Yu R, Yan H (2006) Preparation of shape controlled SrTiO3 crystallites by sol–gel-hydrothermal method. J Cryst Growth 292(1):159–164

    Article  Google Scholar 

  39. Wang Y, Xu G, Yang L, Ren Z, Wei X, Weng W, Du P, Shen G, Han G (2009) Formation of single-crystal SrTiO3 dendritic nanostructures via a simple hydrothermal method. J Cryst Growth 311(8):2519–2523

    Article  Google Scholar 

  40. Miyauchi M (2007) Thin films of single-crystalline SrTiO3 nanorod arrays and their surface wettability conversion. J Phys Chem C 111(33):12440–12445

    Article  Google Scholar 

  41. Ma T-Y, Li H, Ren T-Z, Yuan Z-Y (2012) Mesoporous SrTiO3 nanowires from a template-free hydrothermal process. RSC Adv 2(7):2790–2796

    Article  Google Scholar 

  42. Li Y, Gao X, Li G, Pan G, Yan T, Zhu H (2009) Titanate nanofiber reactivity: fabrication of MTiO3 (M = Ca, Sr, and Ba) perovskite oxides. J Phys Chem C 113(11):4386–4394

    Article  Google Scholar 

  43. Liu J, Sun Y, Li Z, Li S, Zhao J (2011) Photocatalytic hydrogen production from water/methanol solutions over highly ordered Ag–SrTiO3 nanotube arrays. Int J Hydrogen Energy 36(10):5811–5816

    Article  Google Scholar 

  44. Zhang Y, Yu X, Jia Y, Jin Z, Liu J, Huang X (2011) A facile approach for the synthesis of Ag-coated Fe3O4@TiO2 core/shell microspheres as highly efficient and recyclable photocatalysts. Eur J Inorg Chem 33:5096–5104

    Article  Google Scholar 

  45. Yang G, Zhang Q, Chang W, Yan W (2013) Fabrication of Cd1−xZnxS/TiO2 heterostructures with enhanced photocatalytic activity. J Alloys Compd 580:29–36

    Article  Google Scholar 

  46. Yang G, Chang W, Yan W (2013) Fabrication and characterization of NiTiO3 nanofibers by sol–gel assisted electrospinning. J Sol Gel Sci Technol 69(3):473–479

    Article  Google Scholar 

  47. Han Z, Li S, Chu J, Chen Y (2013) Electrospun Pd-doped ZnO nanofibers for enhanced photocatalytic degradation of methylene blue. J Sol Gel Sci Technol 66(1):139–144

    Article  Google Scholar 

  48. Zhao F, Lu Q, Liu S (2013) Preparation and characterization of In2O3/ZnO heterostructured microbelts by sol-gel combined with electrospinning method. J Sol Gel Sci Technol 69(2):357–363

    Article  Google Scholar 

  49. Zhang W, Li H-P, Pan W (2012) Ferromagnetism in electrospun Co-doped SrTiO3 nanofibers. J Mater Sci 47(23):8216–8222

    Article  Google Scholar 

  50. Bai H, Liu Z, Sun DD (2013) Facile fabrication of TiO2/SrTiO3 composite nanofibers by electrospinning for high efficient H2 generation. J Am Ceram Soc 96(3):942–949

    Article  Google Scholar 

  51. Cao T, Li Y, Wang C, Shao C, Liu Y (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27:2946–2952

    Article  Google Scholar 

  52. Macaraig L, Chuangchote S, Sagawa T (2012) Fabrication of SrTiO3 nanofibers for hydrogen production. Mater Res Soc Symp Proc 1408:73–78

    Article  Google Scholar 

  53. Mu J, Chen B, Zhang M, Guo Z, Zhang P, Zhang Z, Sun Y, Shao C, Liu Y (2012) Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures. ACS Appl Mater Interfaces 4(1):424–430

    Article  Google Scholar 

  54. Cao J, Zhang T, Li F, Yang H, Liu S (2013) Enhanced ethanol sensing of SnO2 hollow micro/nanofibers fabricated by coaxial electrospinning. New J Chem 37(7):2031–2036

    Article  Google Scholar 

  55. Kanjwal MA, Sheikh FA, Barakat NAM, Li X, Kim HY, Chronakis IS (2012) Zinc oxide’s hierarchical nanostructure and its photocatalytic properties. Appl Surf Sci 258(8):3695–3702

    Article  Google Scholar 

  56. Huang B-S, Su E-C, Wey M-Y (2013) Design of a Pt/TiO2−xNx/SrTiO3 triplejunction for effective photocatalytic H2 production under solar light irradiation. Chem Eng J 223:854–859

    Article  Google Scholar 

  57. Sulaeman U, Yin S, Sato T (2010) Solvothermal synthesis of designed nonstoichiometric strontium titanate for efficient visible-light photocatalysis. Appl Phys Lett 97(10):103102

    Article  Google Scholar 

  58. Lee SS, Bai H, Liu Z, Sun DD (2013) Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Res 47(12):4059–4073

    Article  Google Scholar 

  59. Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J (2013) Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal 3:882–889

    Article  Google Scholar 

  60. Zhang M, Shao C, Mu J, Zhang Z, Guo Z, Zhang P, Liu Y (2012) One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14(2):605–612

    Article  Google Scholar 

  61. Holmes MA, Townsend TK, Osterloh FE (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48(3):371–373

    Article  Google Scholar 

  62. Yang G, Yan W, Zhang Q, Shen S, Ding S (2013) One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production. Nanoscale 5(24):12432–12439

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of China (2011JDGZ15), Key Technologies Research and Development Program Jiangsu Province (SBE201038213) and Suzhou Research Program of Application Foundation (SYN201004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Yan, W., Wang, J. et al. Fabrication and photocatalytic activities of SrTiO3 nanofibers by sol–gel assisted electrospinning. J Sol-Gel Sci Technol 71, 159–167 (2014). https://doi.org/10.1007/s10971-014-3346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3346-0

Keywords

Navigation