Journal of Sol-Gel Science and Technology

, Volume 71, Issue 1, pp 159–167 | Cite as

Fabrication and photocatalytic activities of SrTiO3 nanofibers by sol–gel assisted electrospinning

  • Guorui Yang
  • Wei Yan
  • Jianan Wang
  • Qian Zhang
  • Honghui Yang
Original Paper


SrTiO3 nanofibers were successfully prepared by a facile electrospinning method with subsequent calcination in air. These one dimensional nanostructures were characterized for the morphological, structural and optical properties by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–visible diffuse reflectance spectroscopy. The photocatalytic investigations showed that the SrTiO3 nanofibers possessed enhanced photocatalytic efficiency in photodegradation of rhodamine B and photocatalytic H2 evolution from water splitting under ultraviolet light irradiation, compared with the SrTiO3 nanoparticles and P25. The enhanced photocatalytic performance can be ascribed to the beneficial microstructure and more negative conduction band edge compared with P25.


Electrospinning SrTiO3 Nanofibers Photocatalysis H2 generation 



This work was supported by the Fundamental Research Funds for the Central Universities of China (2011JDGZ15), Key Technologies Research and Development Program Jiangsu Province (SBE201038213) and Suzhou Research Program of Application Foundation (SYN201004).

Supplementary material

10971_2014_3346_MOESM1_ESM.docx (780 kb)
Supplementary material 1 (DOCX 780 kb)


  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Zhang J, Yu J, Jaroniec M, Gong JR (2012) Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett 12(9):4584–4589CrossRefGoogle Scholar
  3. 3.
    Shinde PS, Go GH, Lee WJ (2012) Facile growth of hierarchical hematite (α-Fe2O3) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting. J Mater Chem 22(21):10469–10471CrossRefGoogle Scholar
  4. 4.
    Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2(12):1231–1257CrossRefGoogle Scholar
  5. 5.
    Xu X, Yang G, Liang J, Ding S, Tang C, Yang H, Yan W, Yang G, Yu D (2014) Fabrication of one-dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity. J Mater Chem A 2(1):116–122CrossRefGoogle Scholar
  6. 6.
    Kuang Q, Yang S (2013) Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 5(9):3683–3690CrossRefGoogle Scholar
  7. 7.
    da Silva LF, Avansi W, Andres J, Ribeiro C, Moreira ML, Longo E, Mastelaro VR (2013) Long-range and short-range structures of cube-like shape SrTiO3 powders: microwave-assisted hydrothermal synthesis and photocatalytic activity. Phys Chem Chem Phys 15(29):12386–12393CrossRefGoogle Scholar
  8. 8.
    Takata T, Domen K (2009) Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. J Phys Chem C 113(45):19386–19388CrossRefGoogle Scholar
  9. 9.
    Zheng J-Q, Zhu Y-J, Xu J-S, Lu B-Q, Qi C, Chen F, Wu J (2013) Microwave-assisted rapid synthesis and photocatalytic activity of mesoporous Nd-doped SrTiO3 nanospheres and nanoplates. Mater Lett 100:62–65CrossRefGoogle Scholar
  10. 10.
    Zou JP, Zhang LZ, Luo SL, Leng LH, Luo XB, Zhang MJ, Luo Y, Guo GC (2012) Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. Int J Hydrogen Energy 37(22):17068–17077CrossRefGoogle Scholar
  11. 11.
    Chen L, Zhang S, Wang L, Xue D, Yin S (2009) Photocatalytic activity of Zr:SrTiO3 under UV illumination. J Cryst Growth 311(3):735–737CrossRefGoogle Scholar
  12. 12.
    Li H, Yin S, Wang Y, Sato T (2012) Blue fluorescence-assisted SrTi1−xCryO3 for efficient persistent photocatalysis. RSC Adv 2(8):3234–3236CrossRefGoogle Scholar
  13. 13.
    Kawasaki S, Akagi K, Nakatsuji K, Yamamoto S, Matsuda I, Harada Y, Yoshinobu J, Komori F, Takahashi R, Lippmaa M (2012) Elucidation of Rh-induced in-gap states of Rh: SrTiO3 visible-light-driven photocatalyst by soft X-ray spectroscopy and first-principles calculations. J Phys Chem C 116(46):24445–24448CrossRefGoogle Scholar
  14. 14.
    Nosaka Y, Takahashi S, Mitani Y, Qiu X, Miyauchi M (2012) Reaction mechanism of visible-light responsive Cu(II)-grafted Mo-doped SrTiO3 photocatalyst studied by means of ESR spectroscopy and chemiluminescence photometry. Appl Catal B 111–112:636–640CrossRefGoogle Scholar
  15. 15.
    Zhang J, Bang JH, Tang C, Kamat PV (2009) Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1):387–395CrossRefGoogle Scholar
  16. 16.
    Wei X, Xu G, Ren Z, Xu C, Shen G, Han G (2008) PVA-assisted hydrothermal synthesis of SrTiO3 nanoparticles with enhanced photocatalytic activity for degradation of RhB. J Am Ceram Soc 91(11):3795–3799CrossRefGoogle Scholar
  17. 17.
    Li H, Yin S, Wang Y, Sekino T, Lee SW, Sato T (2013) Roles of Cr3+ doping and oxygen vacancies in SrTiO3 photocatalysts with high visible light activity for NO removal. J Catal 297:65–69CrossRefGoogle Scholar
  18. 18.
    Sun T, Lu M (2013) Modification of SrTiO3 surface by nitrogen ion bombardment for enhanced photocatalysis. Appl Surf Sci 274:176–180CrossRefGoogle Scholar
  19. 19.
    Domen K, Kudo A, Onishi T, Kosugi N, Kuroda H (1986) Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J Phys Chem 90(2):292–295CrossRefGoogle Scholar
  20. 20.
    Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135(14):5441–5449CrossRefGoogle Scholar
  21. 21.
    Hara S, Yoshimizu M, Tanigawa S, Ni L, Ohtani B, Irie H (2012) Hydrogen and oxygen evolution photocatalysts synthesized from strontium titanate by controlled doping and their performance in two-step overall water splitting under visible light. J Phys Chem C 116(33):17458–17463CrossRefGoogle Scholar
  22. 22.
    Miseki Y, Fujiyoshi S, Gunji T, Sayama K (2013) Photocatalytic water splitting under visible light utilizing I3 /I and IO3 /I redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst. Catal Sci Technol 3(7):1750–1756CrossRefGoogle Scholar
  23. 23.
    Liu H, Dong H, Meng X, Wu F (2013) First-principles study on strontium titanate for visible light photocatalysis. Chem Phys Lett 555:141–144CrossRefGoogle Scholar
  24. 24.
    Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113(40):17536–17542CrossRefGoogle Scholar
  25. 25.
    Boumaza S, Boudjemaa A, Bouguelia A, Bouarab R, Trari M (2010) Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3. Appl Energy 87(7):2230–2236CrossRefGoogle Scholar
  26. 26.
    Liu P, Nisar J, Pathak B, Ahuja R (2012) Hybrid density functional study on SrTiO3 for visible light photocatalysis. Int J Hydrogen Energy 37:11611–11617CrossRefGoogle Scholar
  27. 27.
    Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S (2008) Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant. J Mol Catal A Chem 287(1–2):70–79CrossRefGoogle Scholar
  28. 28.
    Jia A, Liang X, Su Z, Zhu T, Liu S (2010) Synthesis and the effect of calcination temperature on the physical–chemical properties and photocatalytic activities of Ni, La codoped SrTiO3. J Hazard Mater 178(1–3):233–242CrossRefGoogle Scholar
  29. 29.
    Liu X, Bai H (2011) Liquid–solid reaction synthesis of SrTiO3 submicron-sized particles. Mater Chem Phys 127(1):21–23CrossRefGoogle Scholar
  30. 30.
    Kato H, Kobayashi M, Hara M, Kakihana M (2013) Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting. Catal Sci Technol 3(7):1733–1738CrossRefGoogle Scholar
  31. 31.
    da Silva LF, Maia LJQ, Bernardi MIB, Andrés JA, Mastelaro VR (2011) An improved method for preparation of SrTiO3 nanoparticles. Mater Chem Phys 125(1–2):168–173CrossRefGoogle Scholar
  32. 32.
    Guo J, Ouyang S, Li P, Zhang Y, Kako T, Ye J (2013) A new heterojunction Ag3PO4/Cr–SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation. Appl Catal B 134:286–292CrossRefGoogle Scholar
  33. 33.
    Li H, Yin S, Wang Y, Kobayashi M, Tezuka S, Kakihana M, Sato T (2012) Effect of carboxyl group on the visible-light photocatalytic activity of SrTiO3 nanoparticles. Res Chem Intermed 39(4):1615–1621CrossRefGoogle Scholar
  34. 34.
    Liu Y, Xie L, Li Y, Yang R, Qu J, Li Y, Li X (2008) Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J Power Sources 183(2):701–707CrossRefGoogle Scholar
  35. 35.
    Zheng Z, Huang B, Qin X, Zhang X, Dai Y (2011) Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity. J Colloid Interface Sci 358(1):68–72CrossRefGoogle Scholar
  36. 36.
    Dong W, Li X, Yu J, Guo W, Li B, Tan L, Li C, Shi J, Wang G (2012) Porous SrTiO3 spheres with enhanced photocatalytic performance. Mater Lett 67(1):131–134CrossRefGoogle Scholar
  37. 37.
    Dang F, K-i Mimura, Kato K, Imai H, Wada S, Haneda H, Kuwabara M (2011) Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method. CrystEngComm 13(11):3878–3883CrossRefGoogle Scholar
  38. 38.
    Xu H, Wei S, Wang H, Zhu M, Yu R, Yan H (2006) Preparation of shape controlled SrTiO3 crystallites by sol–gel-hydrothermal method. J Cryst Growth 292(1):159–164CrossRefGoogle Scholar
  39. 39.
    Wang Y, Xu G, Yang L, Ren Z, Wei X, Weng W, Du P, Shen G, Han G (2009) Formation of single-crystal SrTiO3 dendritic nanostructures via a simple hydrothermal method. J Cryst Growth 311(8):2519–2523CrossRefGoogle Scholar
  40. 40.
    Miyauchi M (2007) Thin films of single-crystalline SrTiO3 nanorod arrays and their surface wettability conversion. J Phys Chem C 111(33):12440–12445CrossRefGoogle Scholar
  41. 41.
    Ma T-Y, Li H, Ren T-Z, Yuan Z-Y (2012) Mesoporous SrTiO3 nanowires from a template-free hydrothermal process. RSC Adv 2(7):2790–2796CrossRefGoogle Scholar
  42. 42.
    Li Y, Gao X, Li G, Pan G, Yan T, Zhu H (2009) Titanate nanofiber reactivity: fabrication of MTiO3 (M = Ca, Sr, and Ba) perovskite oxides. J Phys Chem C 113(11):4386–4394CrossRefGoogle Scholar
  43. 43.
    Liu J, Sun Y, Li Z, Li S, Zhao J (2011) Photocatalytic hydrogen production from water/methanol solutions over highly ordered Ag–SrTiO3 nanotube arrays. Int J Hydrogen Energy 36(10):5811–5816CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Yu X, Jia Y, Jin Z, Liu J, Huang X (2011) A facile approach for the synthesis of Ag-coated Fe3O4@TiO2 core/shell microspheres as highly efficient and recyclable photocatalysts. Eur J Inorg Chem 33:5096–5104CrossRefGoogle Scholar
  45. 45.
    Yang G, Zhang Q, Chang W, Yan W (2013) Fabrication of Cd1−xZnxS/TiO2 heterostructures with enhanced photocatalytic activity. J Alloys Compd 580:29–36CrossRefGoogle Scholar
  46. 46.
    Yang G, Chang W, Yan W (2013) Fabrication and characterization of NiTiO3 nanofibers by sol–gel assisted electrospinning. J Sol Gel Sci Technol 69(3):473–479CrossRefGoogle Scholar
  47. 47.
    Han Z, Li S, Chu J, Chen Y (2013) Electrospun Pd-doped ZnO nanofibers for enhanced photocatalytic degradation of methylene blue. J Sol Gel Sci Technol 66(1):139–144CrossRefGoogle Scholar
  48. 48.
    Zhao F, Lu Q, Liu S (2013) Preparation and characterization of In2O3/ZnO heterostructured microbelts by sol-gel combined with electrospinning method. J Sol Gel Sci Technol 69(2):357–363CrossRefGoogle Scholar
  49. 49.
    Zhang W, Li H-P, Pan W (2012) Ferromagnetism in electrospun Co-doped SrTiO3 nanofibers. J Mater Sci 47(23):8216–8222CrossRefGoogle Scholar
  50. 50.
    Bai H, Liu Z, Sun DD (2013) Facile fabrication of TiO2/SrTiO3 composite nanofibers by electrospinning for high efficient H2 generation. J Am Ceram Soc 96(3):942–949CrossRefGoogle Scholar
  51. 51.
    Cao T, Li Y, Wang C, Shao C, Liu Y (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27:2946–2952CrossRefGoogle Scholar
  52. 52.
    Macaraig L, Chuangchote S, Sagawa T (2012) Fabrication of SrTiO3 nanofibers for hydrogen production. Mater Res Soc Symp Proc 1408:73–78CrossRefGoogle Scholar
  53. 53.
    Mu J, Chen B, Zhang M, Guo Z, Zhang P, Zhang Z, Sun Y, Shao C, Liu Y (2012) Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures. ACS Appl Mater Interfaces 4(1):424–430CrossRefGoogle Scholar
  54. 54.
    Cao J, Zhang T, Li F, Yang H, Liu S (2013) Enhanced ethanol sensing of SnO2 hollow micro/nanofibers fabricated by coaxial electrospinning. New J Chem 37(7):2031–2036CrossRefGoogle Scholar
  55. 55.
    Kanjwal MA, Sheikh FA, Barakat NAM, Li X, Kim HY, Chronakis IS (2012) Zinc oxide’s hierarchical nanostructure and its photocatalytic properties. Appl Surf Sci 258(8):3695–3702CrossRefGoogle Scholar
  56. 56.
    Huang B-S, Su E-C, Wey M-Y (2013) Design of a Pt/TiO2−xNx/SrTiO3 triplejunction for effective photocatalytic H2 production under solar light irradiation. Chem Eng J 223:854–859CrossRefGoogle Scholar
  57. 57.
    Sulaeman U, Yin S, Sato T (2010) Solvothermal synthesis of designed nonstoichiometric strontium titanate for efficient visible-light photocatalysis. Appl Phys Lett 97(10):103102CrossRefGoogle Scholar
  58. 58.
    Lee SS, Bai H, Liu Z, Sun DD (2013) Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Res 47(12):4059–4073CrossRefGoogle Scholar
  59. 59.
    Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J (2013) Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal 3:882–889CrossRefGoogle Scholar
  60. 60.
    Zhang M, Shao C, Mu J, Zhang Z, Guo Z, Zhang P, Liu Y (2012) One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14(2):605–612CrossRefGoogle Scholar
  61. 61.
    Holmes MA, Townsend TK, Osterloh FE (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48(3):371–373CrossRefGoogle Scholar
  62. 62.
    Yang G, Yan W, Zhang Q, Shen S, Ding S (2013) One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production. Nanoscale 5(24):12432–12439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Guorui Yang
    • 1
  • Wei Yan
    • 1
    • 2
  • Jianan Wang
    • 1
  • Qian Zhang
    • 1
  • Honghui Yang
    • 1
  1. 1.Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Suzhou Academy of Xi’an Jiaotong UniversitySuzhouChina

Personalised recommendations