Advertisement

Journal of Sol-Gel Science and Technology

, Volume 70, Issue 3, pp 473–481 | Cite as

Incorporation of niobium into bridged silsesquioxane based silica networks

  • Rogier Besselink
  • Sabarinathan Venkatachalam
  • Leo van Wüllen
  • Johan E. ten Elshof
Original Paper

Abstract

In this work different synthesis routes were evaluated with the aim of optimizing the incorporation of niobium within a hybrid silica matrix on an atomic scale. The fast kinetics of the hydrolysis/polycondensation of the organic Nb precursor Nb(OEt)5 entails a segregation of the resulting material into Nb2O5 and a silica based network. To overcome this effect we (a) performed a prehydrolysis of 1,2-bis-triethoxy-ethane (BTESE) prior to adding niobium penta-ethoxide, or (b) attempted to reduce the availability of Nb via a complexation of Nb by either acetylacetone or 2-methoxyethanol. The network organization was evaluated from results of Fourier transform infrared as well as 13C, 29Si and 17O MAS NMR spectroscopy. Whereas the prehydrolysis of BTESE and the addition of 2-methoxyethanol induced only moderate mixing of Nb and Si, leading to a network in which islands of Nb2O5 are linked to the hosting silica based matrix via Nb–O–Si bonds, the use of acetylacetonate lead to a mixing of Nb and Si on the atomic scale, forming a mixed Nb–O–Si network without any extended clusters of segregated Nb2O5. The Si–C–C–Si bridge from the silsesquioxane is found to survive the condensation process and is even present in the resulting materials after annealing at 200 °C.

Keywords

Solid state NMR Microporous hybrid silica Niobium Prehydrolysis Chelating ligands 

References

  1. 1.
    Castricum HL, Kreiter R, Van Veen HM, Blank DHA, Vente JF, Ten Elshof JE (2008) High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability. J Membr Sci 324(1–2):111–118CrossRefGoogle Scholar
  2. 2.
    Kong C, Koushima A, Kamada T, Shintani T, Kanezashi M, Yoshioka T, Tsuru T (2011) Enhanced performance of inorganic-polyamide nanocomposite membranes prepared by metal-alkoxide-assisted interfacial polymerization. J Membr Sci 366(1–2):382–388CrossRefGoogle Scholar
  3. 3.
    Castricum HL, Sah A, Kreiter R, Blank DHA, Vente JF, Ten Elshof JE (2008) Hybrid ceramic nanosieves: stabilizing nanopores with organic links. Chem Commun 9:1103–1105CrossRefGoogle Scholar
  4. 4.
    Kreiter R, Rietkerk MDA, Castricum HL, Van Veen HM, Ten Elshof JE, Vente JF (2009) Stable hybrid silica nanosieve membranes for the dehydration of lower alcohols. ChemSusChem 2(2):158–160CrossRefGoogle Scholar
  5. 5.
    Kreiter R, Rietkerk MDA, Castricum HL, Van Veen HM, Ten Elshof JE, Vente JF (2011) Evaluation of hybrid silica sols for stable microporous membranes using high-throughput screening. J Sol–Gel Sci Technol 57(3):245–252CrossRefGoogle Scholar
  6. 6.
    Kanezashi M, Yada K, Yoshioka T, Tsuru T (2010) Organic–inorganic hybrid silica membranes with controlled silica network size: preparation and gas permeation characteristics. J Membr Sci 348(1–2):310–318CrossRefGoogle Scholar
  7. 7.
    Chang K-S, Yoshioka T, Kanezashi M, Tsuru T, Tung K-L (2010) A molecular dynamics simulation of a homogeneous organic–inorganic hybrid silica membrane. Chem Commun 46(48):9140–9142CrossRefGoogle Scholar
  8. 8.
    Igi R, Yoshioka T, Ikuhara YH, Iwamoto Y, Tsuru T (2008) Characterization of co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J Am Ceram Soc 91(9):2975–2981CrossRefGoogle Scholar
  9. 9.
    Kanezashi M, Asaeda M (2006) Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J Membr Sci 271(1–2):86–93CrossRefGoogle Scholar
  10. 10.
    Qi H, Chen H, Li L, Zhu G, Xu N (2012) Effect of Nb content on hydrothermal stability of a novel ethylene-bridged silsesquioxane molecular sieving membrane for H2/CO2 separation. J Membr Sci 421–422:190–200CrossRefGoogle Scholar
  11. 11.
    Qi H, Han J, Xu N, Bouwmeester HJM (2010) Hybrid organic–inorganic microporous membranes with high hydrothermal stability for the separation of carbon dioxide. ChemSusChem 3(12):1375–1378CrossRefGoogle Scholar
  12. 12.
    Boffa V, ten Elshof JE, Petukhov AV, Blank DH (2008) Microporous niobia–silica membrane with very low CO2 permeability. ChemSusChem 1(5):437–443CrossRefGoogle Scholar
  13. 13.
    Boffa V, ten Elshof JE, Garcia R, Blank DHA (2009) Microporous niobia–silica membranes: influence of sol composition and structure on gas transport properties. Microporous Mesoporous Mater 118(1–3):202–209CrossRefGoogle Scholar
  14. 14.
    Yoshida K, Hirano Y, Fujii H, Tsuru T, Asaeda M (2001) Hydrothermal stability and performance of silica–zirconia membranes for hydrogen separation in hydrothermal conditions. J Chem Eng Jpn 34(4):523–530CrossRefGoogle Scholar
  15. 15.
    Ziolek M, Nowak I (1997) Synthesis and characterization of niobium-containing MCM-41. Zeolites 18(5–6):356–360CrossRefGoogle Scholar
  16. 16.
    Nowak I (2012) Frontiers in mesoporous molecular sieves containing niobium: from model materials to catalysts. Catal Today 192(1):80–88CrossRefGoogle Scholar
  17. 17.
    Sedlar M, Sayer M (1995) Reactivity of titanium isopropoxide, zirconium propoxide and niobium ethoxide in the system of 2-methoxyethanol, 2,4-pentanedione and water. J Sol–Gel Sci Technol 5(1):27–40CrossRefGoogle Scholar
  18. 18.
    Spijksma GI, Bouwmeester HJM, Blank DHA, Kessler VG (2004) Stabilization and destabilization of zirconium propoxide precursors by acetylacetone. Chem Commun 10(16):1874–1875CrossRefGoogle Scholar
  19. 19.
    Bradley DC, Holloway CE (1968) Nuclear magnetic resonance studies on niobium and tantalum penta-alkoxides. J Chem Soc A 1968:219–223CrossRefGoogle Scholar
  20. 20.
    Ibers JA (1963) Crystal and molecular structure of titanium (IV) ethoxide. Nature 197(4868):686–687CrossRefGoogle Scholar
  21. 21.
    Blanchard J, In M, Schaudel B, Sanchez C (1998) Hydrolysis and condensation reactions of transition metal alkoxides: calorimetric study and evaluation of the extent of reaction. Eur J Inorg Chem 8:1115–1127CrossRefGoogle Scholar
  22. 22.
    Leaustic A, Babonneau F, Livage J (1989) Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 1. Study of the alkoxide modification. Chem Mater 1(2):240–247CrossRefGoogle Scholar
  23. 23.
    Pickup DM, Mountjoy G, Wallidge GW, Anderson R, Cole JM, Newport RJ, Smith ME (1999) A structural study of (TiO2)x (SiO2)1–x (x = 0.18, 0.30 and 0.41) xerogels prepared using acetylacetone. J Mater Chem 9(6):1299–1305CrossRefGoogle Scholar
  24. 24.
    Gervais C, Babonneau F, Smith ME (2001) Detection, quantification, and magnetic field dependence of solid-state 17O NMR of X − O−Y (X, Y = Si, Ti) linkages: implications for characterizing amorphous titania–silica-based materials. J Phys Chem B 105(10):1971–1977CrossRefGoogle Scholar
  25. 25.
    Delattre L, Babonneau F (1997) 17O Solution NMR characterization of the preparation of sol − gel derived SiO2/TiO2 and SiO2/ZrO2 glasses. Chem Mater 9(11):2385–2394CrossRefGoogle Scholar
  26. 26.
    Nowak I, Ziolek M (1999) Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem Rev 99(12):3603–3624CrossRefGoogle Scholar
  27. 27.
    Bonhomme C, Coelho C, Baccile N, Gervais C, Azaïs T, Babonneau F (2007) Advanced solid state NMR techniques for the characterization of Sol–Gel-derived materials. Acc Chem Res 40(9):738–746CrossRefGoogle Scholar
  28. 28.
    Drake KO, Carta D, Skipper LJ, Sowrey FE, Newport RJ, Smith ME (2005) A multinuclear solid state NMR study of the sol–gel formation of amorphous Nb2O5–SiO2 materials. Solid State Nucl Magn Reson 27(1–2):28–36CrossRefGoogle Scholar
  29. 29.
    Julián B, Gervais C, Rager M-N, Maquet J, Cordoncillo E, Escribano P, Babonneau F, Sanchez C (2004) Solid-state 17O NMR characterization of PDMS − MxOy (M = Ge(IV), Ti(IV), Zr(IV), Nb(V), and Ta(V)) organic − inorganic nanocomposites. Chem Mater 16(3):521–529CrossRefGoogle Scholar
  30. 30.
    Holland MA, Pickup DM, Mountjoy G, Tsang ESC, Wallidge GW, Newport RJ, Smith ME (2000) Synthesis, characterisation and performance of (TiO2)0.18 (SiO2)0.82 xerogel catalysts. J Mater Chem 10(11):2495–2501CrossRefGoogle Scholar
  31. 31.
    Babonneau F, Maquet J (2000) Nuclear magnetic resonance techniques for the structural characterization of siloxane–oxide hybrid materials. Polyhedron 19(3):315–322CrossRefGoogle Scholar
  32. 32.
    Dubinin M (1974) On physical feasibility of Brunauer’s micropore analysis method. J Colloid Interface Sci 46(3):351–356CrossRefGoogle Scholar
  33. 33.
    Kaganer M (1959) A new method for the determination of the specific adsorption surface of adsorbents and other finely dispersed substances. Zh Fiz Khim 33:2202–2210Google Scholar
  34. 34.
    Cedeño L, Hernandez D, Klimova T, Ramirez J (2003) Synthesis of Nb-containing mesoporous silica molecular sieves: analysis of its potential use in HDS catalysts. Appl Catal A Gen 241(1–2):39–50CrossRefGoogle Scholar
  35. 35.
    Julián B, Gervais C, Cordoncillo E, Escribano P, Babonneau F, Sanchez C (2003) Synthesis and characterization of transparent PDMS-metal-oxo based organic − inorganic nanocomposites. Chem Mater 15(15):3026–3034CrossRefGoogle Scholar
  36. 36.
    Nakamoto K (1986) Infra red and Raman spectra of Inorganic and coordination compounds, 4th edn. Wiley, New YorkGoogle Scholar
  37. 37.
    Jiang H, Zheng Z, Wang X (2008) Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib Spectrosc 46(1):1–7CrossRefGoogle Scholar
  38. 38.
    Cai Y, Yang S, Jin S, Yang H, Hou G, Xia J (2011) Electrochemical synthesis, characterization and thermal properties of niobium ethoxide. J Cent South Univ Technol 18(1):73–77CrossRefGoogle Scholar
  39. 39.
    Castricum HL, Sah A, Kreiter R, Blank DHA, Vente JF, Ten Elshof JE (2008) Hydrothermally stable molecular separation membranes from organically linked silica. J Mater Chem 18(18):2150–2158CrossRefGoogle Scholar
  40. 40.
    de Vos RM, Verweij H (1998) Improved performance of silica membranes for gas separation. J Membr Sci 143(1–2):37–51CrossRefGoogle Scholar
  41. 41.
    Qureshi HF, Nijmeijer A, Winnubst L (2013) Influence of sol–gel process parameters on the micro-structure and performance of hybrid silica membranes. J Membr Sci 446:19–25 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rogier Besselink
    • 1
  • Sabarinathan Venkatachalam
    • 2
  • Leo van Wüllen
    • 2
  • Johan E. ten Elshof
    • 1
  1. 1.MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  2. 2.Insitute of PhysicsAugsburg UniversityAugsburgGermany

Personalised recommendations