Advertisement

Journal of Sol-Gel Science and Technology

, Volume 70, Issue 3, pp 428–440 | Cite as

Phase transformation and crystalline growth of 4 mol% yttria partially stabilized zirconia

  • Cheng-Li Wang
  • Weng-Sing Hwang
  • Hsueh-Liang Chu
  • Feng-Lin Yen
  • Chi-Yuen Hwang
  • Chi-Shiung Hsi
  • Huey-Er Lee
  • Moo-Chin Wang
Original Paper

Abstract

The phase transformation and crystalline growth of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) precursor powders have been investigated using the coprecipitation route, using zirconium oxide chloride octahydrate (ZrOCl2·8H2O) and yttrium nitrate (Y(NO3)3·6H2O) as the initial materials. Differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED), and high resolution TEM (HRTEM) were utilized to characterize the behavior of phase transformation and crystalline growth of the 4Y-PSZ precursor powders after calcined. Tetragonal ZrO2 crystallization occurred at about 718.2 K. The activation energy of tetragonal ZrO2 crystallization was 227.0 ± 17.4 kJ/mol, obtained by a non-isothermal method. The growth morphology parameter (n) and growth mechanism index were close to 2.0, showing that tetragonal ZrO2 had a plate-like morphology. The crystalline size of tetragonal ZrO2 increased from 7.9 to 27.6 nm when the calcination temperature was increased from 973 to 1,273 K. The activation energies of tetragonal ZrO2 growth were 14.97 ± 0.33 and 84.46 ± 6.65 kJ/mol when precursor powders after calcined from 723–973 and 973–1,273 K, respectively.

Keywords

Phase transformation Crystalline growth Activation energy 4Y-PSZ 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Economic Affairs, Taiwan, Republic of China, under Grant 102-EC-17-A-08-S1-142. The authors and also deeply thank Prof. M.H. Hon and Mr. S.Y. Yau for offering valuable advice and suggestions on the experiments and analyses.

References

  1. 1.
    Subbarao EC (1981) In: Heuer AH, Hobbs LW (eds) Advances in ceramics, vol 3. The American Ceramic Society, Columbus, p 1Google Scholar
  2. 2.
    Pascual C, Duran P (1983) J Am Ceram Soc 66:23–27CrossRefGoogle Scholar
  3. 3.
    Heuer AH (1987) Am Ceram Soc 70:689–698CrossRefGoogle Scholar
  4. 4.
    Yang B, Lange-Jansen HC, Scharnberg M, Wolfart S, Ludwig K, Adelung R, Kern M (2008) Dent Mater 24:508–513CrossRefGoogle Scholar
  5. 5.
    Kosmač T, Oblak Č, Marion L (2008) J Eur Ceram Soc 28:1085–1090CrossRefGoogle Scholar
  6. 6.
    Piconi C, Maccauro G (1999) Biomaterials 20:1–25CrossRefGoogle Scholar
  7. 7.
    Deville S, Chevalier J, Fantozzi G, Bartolome JF, Reguena J, Moya JS, Torrecillas R, Diag LA (2003) J Eur Ceram Soc 23:2975–2982CrossRefGoogle Scholar
  8. 8.
    Hannink RHJ, Kelly PM, Muddle BC (2000) J Am Ceram Soc 83:461–487CrossRefGoogle Scholar
  9. 9.
    Álvarez MR, Landa AR, Otero-Diaz LC, Terralvo MJ (1998) J Am Ceram Soc 18:1201–1210CrossRefGoogle Scholar
  10. 10.
    Wu NL, Wu TE (2000) J Am Ceram Soc 83:3225–3227CrossRefGoogle Scholar
  11. 11.
    Vasylkiv O, Sakka Y (2001) J Am Ceram Soc 84:2489–2494CrossRefGoogle Scholar
  12. 12.
    Li W, Gao L (2001) Ceram Int 27:543–546CrossRefGoogle Scholar
  13. 13.
    Viazzi C, Bonino JP, Ansart F, Barnabé A (2008) J Alloys Compds 452:377–383CrossRefGoogle Scholar
  14. 14.
    Hsu YW, Yang KH, Chang KM, Yeh SW, Wang MC (2011) J Alloys Compds 509:6864–6870CrossRefGoogle Scholar
  15. 15.
    Shukla S, Stal S, Vij R, Bandyopadhyay S (2003) Nano Lett 3:397–401CrossRefGoogle Scholar
  16. 16.
    Chen SG, Yin YS, Wang DP, Li J (2004) J Cryst Growth 267:100–109CrossRefGoogle Scholar
  17. 17.
    Lee HE, Du JK, Sie YY, Wang CH, Wu JH, Wang CL, Hwang WS, Huang HH, Li WL, Wang MC (2011) J Non-Crystal Solids 357:2103–2108CrossRefGoogle Scholar
  18. 18.
    Kuo CW, Shen YH, Wen SB, Lee HE, Hung IM, Wang MC (2011) Ceram Int 37:341–347CrossRefGoogle Scholar
  19. 19.
    Wang CH, Wang MC, Du JK, Sie YY, Hsi CH, Lee HE (2013) Ceram Int 39:5165–5174CrossRefGoogle Scholar
  20. 20.
    Hsu YW, Yang KH, Yen SW, Wang MC (2013) J Alloys Compds 555:82–87CrossRefGoogle Scholar
  21. 21.
    Cullity BD (1967) Elements of X-ray diffraction. Addison-Wesley, Reading, p 388Google Scholar
  22. 22.
    Whitney ED (1970) J Am Ceram Soc 53:697–698CrossRefGoogle Scholar
  23. 23.
    Lim BP, Wang J, Ng CC, Chen CH, Gan LM (1998) Ceram Int 24:205–209CrossRefGoogle Scholar
  24. 24.
    Huang HJ, Wang MC (2013) Ceram Int 39:1729–1739CrossRefGoogle Scholar
  25. 25.
    Whitney ED (1965) Faraday Soc 6:1991–2000CrossRefGoogle Scholar
  26. 26.
    Corman GS, Stubican VS (1985) J Am Ceram Soc 68:174–181CrossRefGoogle Scholar
  27. 27.
    Marotta A, Buri A (1978) Thermochinica Acta 25:155–160CrossRefGoogle Scholar
  28. 28.
    Ramanathan S, Nuraleedharan RV, Roy SK, Nayar PKK (1995) J Am Ceram Soc 78:429–432CrossRefGoogle Scholar
  29. 29.
    Wang MC, Hung HJ (2013) Thermochim Acta 567:93–99CrossRefGoogle Scholar
  30. 30.
    Matusita K, Sakka S, Matsui Y (1975) J Mater Sci 10:961–966CrossRefGoogle Scholar
  31. 31.
    Matusita K, Sakka S (1979) Thermochim Acta 33:351–354CrossRefGoogle Scholar
  32. 32.
    Chen YF, Wang MC, Hon MH (2004) J Eur Ceram Soc 24:2389–2397CrossRefGoogle Scholar
  33. 33.
    Hsi CS, Wang MC (1998) J Mater Res 13:2655–2661CrossRefGoogle Scholar
  34. 34.
    Garvie RC, Hannink RH, Pascoe RT (1975) Nature 258:703–704CrossRefGoogle Scholar
  35. 35.
    Garvie RC (1978) J Phys Chem 76:1497–1502Google Scholar
  36. 36.
    Li G, Li L, Boerio-Goates J, Woodfield BF (2005) J Am Chem Soc 127:8666–8695Google Scholar
  37. 37.
    Lai JKL, Shek CH, Lin GM (2003) Scripta Mater 49:441–446CrossRefGoogle Scholar
  38. 38.
    Chraska T, King AH, Berndt CC (2000) Mater Sci Eng A 286:169–178CrossRefGoogle Scholar
  39. 39.
    VanValzah JR, Eaton HE (1991) Surf Coat Technol 46:289–300CrossRefGoogle Scholar
  40. 40.
    Wang MC (1994) J Mater Res 9:2290–2297CrossRefGoogle Scholar
  41. 41.
    Ko HH, Yang G, Cheng HZ, Wang MC, Zhao X (2014) Ceram Int 40:4055–4064Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Cheng-Li Wang
    • 1
  • Weng-Sing Hwang
    • 1
    • 2
  • Hsueh-Liang Chu
    • 1
  • Feng-Lin Yen
    • 3
  • Chi-Yuen Hwang
    • 4
  • Chi-Shiung Hsi
    • 5
  • Huey-Er Lee
    • 6
    • 7
  • Moo-Chin Wang
    • 3
  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of Nanotechnology and Microsystems EngineeringNational Cheng Kung UniversityTainanTaiwan
  3. 3.Department of Fragrance and Cosmetic ScienceKaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Department of Resources EngineeringNational Cheng Kung UniversityTainanTaiwan
  5. 5.Department of Materials Science and EngineeringNational United UniversityMiao LiTaiwan
  6. 6.Department of DentistryKaohsiung Medical UniversityKaohsiungTaiwan
  7. 7.Department of DentistryKaohsiung Medical University Chung Ho Memorial HospitalKaohsiungTaiwan

Personalised recommendations