Advertisement

Journal of Sol-Gel Science and Technology

, Volume 70, Issue 2, pp 172–179 | Cite as

Proton conduction in nanopores of sol–gel-derived porous glasses and thin films

  • Yusuke Daiko
Original Paper

Abstract

Nanoporous glasses and nanoporous thin films were prepared using sol–gel method, and proton conductivities in nanopores of sol–gel-derived porous glasses and thin films are overviewed in this paper. Proton motions inside nanopores were monitored by impedance and nuclear magnetic resonance (NMR) spectroscopies. The impedance data is correlated with the proton motion in bulk scale, whereas NMR data is correlated with that in nanometer scale, respectively. From the comparison of the activation energies obtained from impedance and NMR spectroscopies, percolation of proton conducting path and its relation to the amount of absorbed water molecules are shown. In the case of nanoporous thin films, directions of pores can be controlled by using cationic and non-ionic surfactants. Relationship between direction of pores and proton conductivity is discussed based on impedance test results.

Keywords

Proton conduction Nanopore Spin–lattice relaxation time NMR 

Notes

Acknowledgments

The author, Y. Daiko, is deeply grateful to Dr. M. Nogami and Dr. T. Kasuga (Nagoya Inst. Tech.), Dr. T. Yazawa and Dr. A. Mineshige (Univ. Hyogo), Dr. T. Minami (Osaka Prefecture Univ.), Dr. A. Matsuda and Dr. H. Muto (Toyohashi Univ. Technol.) and Dr. K. Katagri (Hiroshima Univ.) for their kind supports and fruitful discussions. Advisers and colleagues of the author’s researches are also all very much appreciated. The works described in this paper are partially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant-in-Aid for Young Scientists, No. 23686095).

References

  1. 1.
    Wirguin C-H (1996) J Memb Sci 120:1–33CrossRefGoogle Scholar
  2. 2.
    Steele BCH, Heinzel A (2001) Nature 414:345–352CrossRefGoogle Scholar
  3. 3.
    Mauritz KA, Moore PB (2004) Chem Rev 104:4535–4585CrossRefGoogle Scholar
  4. 4.
    Stolper E (1982) Contrib Miner Petrol 81:1–17CrossRefGoogle Scholar
  5. 5.
    Kurjian CR, Russell LE (1958) J Soc Glass Technol 42:130–144Google Scholar
  6. 6.
    Tomlinson JW (1956) J Soc Glass Technol 40:25–31Google Scholar
  7. 7.
    Sweet JR, White WB (1969) Phys Chem Glass 10:246–251Google Scholar
  8. 8.
    Crlova GP (1964) Geol Rev 6:254–258CrossRefGoogle Scholar
  9. 9.
    Mcmillan PF, Remmele RL (1986) Am Miner 71:772–778Google Scholar
  10. 10.
    Pearson AD, Pasteur GA, Northover WR (1979) J Mater Sci 14:869–872Google Scholar
  11. 11.
    Nakamoto K, Margoshes M, Rundle RE (1955) J Am Chem Soc 77:6480–6486CrossRefGoogle Scholar
  12. 12.
    Mcmillan PF, Jakobsson S, Holloway JR, Siver LA (1983) Geochim Cosmochim 47:1937–1943CrossRefGoogle Scholar
  13. 13.
    Bartholomew RF, Schreurs JWH (1980) J Non-Cryst Solids 38&39:679–684CrossRefGoogle Scholar
  14. 14.
    Stone J, Walrafen GE (1982) J Chem Phys 76:1712–1722CrossRefGoogle Scholar
  15. 15.
    Scholze H (1959) Glastech Chem Ber 32:142 (ISSN: 0017-1085)Google Scholar
  16. 16.
    Doremus RH (1968) J Electrochem Soc 115:181–186CrossRefGoogle Scholar
  17. 17.
    Ernsberger FM (1979) Phys Chem Glass 21:146–149Google Scholar
  18. 18.
    Ernsberger FM (1980) J Non Cryst Solids 38&39:557–561CrossRefGoogle Scholar
  19. 19.
    Nogami M, Daiko Y, Akai T, Kasuga T (2001) J Phys Chem B 105:4653–4656Google Scholar
  20. 20.
    Nogami M, Abe Y (1997) Phys Rev B 55:12108–12112CrossRefGoogle Scholar
  21. 21.
    McDonnell MT, Keffer DJ (2013) Micropo Mesopo Mater 177:17–24CrossRefGoogle Scholar
  22. 22.
    Colomer MT, Anderson MA (2001) J Non Cryst Solids 290:93–104CrossRefGoogle Scholar
  23. 23.
    Vichi FM, Colomer MT, Anderson MA (1999) Electrochem Solid State Lett 2:313–316CrossRefGoogle Scholar
  24. 24.
    Wang C-T, Wu C-L (2006) Thin Solid Films 496:658–664CrossRefGoogle Scholar
  25. 25.
    Rordiguez-Castellón E, Jiménez-Jiménez J, Jiménez-López A, Maireles-Torres P, Ramos-Barrado JR, Roziére J (1999) Solid State Ionics 125:407–410CrossRefGoogle Scholar
  26. 26.
    Daiko Y, Kasuga T, Nogami M (2002) Chem Mater 14:4624–4627CrossRefGoogle Scholar
  27. 27.
    Daiko Y, Kasuga T, Nogami M (2004) Micropo Mesopo Mater 69:149–155CrossRefGoogle Scholar
  28. 28.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  29. 29.
    Gregg SJ, Sing SW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, New YorkGoogle Scholar
  30. 30.
    Schreiber A, Ketelsen I, Findenegg GH (2001) Phys Chem Chem Phys 3:1185–1195CrossRefGoogle Scholar
  31. 31.
    Harris RK, Jackson P, Merwin LH, Say BJ, Hägele G (1988) J Chem Soc Rarad Trans 1 84:3649–3672CrossRefGoogle Scholar
  32. 32.
    Daiko Y, Akai T, Kasuga T, Nogami M (2001) J Ceram Soc Jpn 109:815–817CrossRefGoogle Scholar
  33. 33.
    Maniwa Y, Kataura H, Abe M, Suzuki S, Achiba Y, Kira H, Matsuda K (2002) J Phys Soc Jpn 71:2863–2866CrossRefGoogle Scholar
  34. 34.
    Christenson HK (2001) J Phys Cond Matt 13:R95–R133CrossRefGoogle Scholar
  35. 35.
    Hummer G, Rasaiah JC, Noworyta JP (2001) Nature 414:188–190CrossRefGoogle Scholar
  36. 36.
    Stejskal EO, Tanner JE (1965) J Chem Phys 42:288–292CrossRefGoogle Scholar
  37. 37.
    Nitta K, Natsuisaka M, Tanioka A (1999) Desalination 123:9–14CrossRefGoogle Scholar
  38. 38.
    Nogami M, Matsumura M, Daiko Y (2006) Sens Act B 120:266–269Google Scholar
  39. 39.
    Li H, Nogami M (2002) Adv Mater 14:912–914CrossRefGoogle Scholar
  40. 40.
    Li H, Nogami M (2003) Chem Commun 236–237Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Frontier MaterialsNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations