Skip to main content
Log in

Microwave sintering of nickel ferrite nanoparticles processed via sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Magnetic nickel ferrite (NiFe2O4) was prepared by sol–gel process and calcined in the 2.45 GHz singlemode microwave furnace to synthesize nickel nanopowder. The sol–gel method was used for the processing of the NiFe2O4 powder because of its potential for making fine, pure and homogeneous powders. Sol–gel is a chemical method that has the possibility of synthesizing a reproducible material. Microwave energy is used for the calcining of this powder and the sintering of the NiFe2O4 samples. Its use for calcination has the advantage of reducing the total processing time and the soak temperature. In addition to the above combination of sol–gel and microwave processing yields to nanoscale particles and a more uniform distribution of their sizes. X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and vibrating sample magnetometer were carried out to investigate structural, elemental, morphological and magnetic aspects of NiFe2O4. The results showed that the mean size and the saturation magnetization of the NiFe2O4 nanoparticles are about 30 nm and 55.27 emu/g, respectively. This method could be used as an alternative to other chemical methods in order to obtain NiFe2O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu Q , Wei Y, Liu Y, Ji X, Yang L , Gu M (2009) Solid State Sci 11(2) 472

  2. Tian MB (2001) Magnetic material. Tsinghua University Press, Beijing

  3. Pileni MP (2001) Adv Funct Mater 5:323

    Article  Google Scholar 

  4. Cheng FY, Su CH, Yang YS, Yeh CS, Tsa CY, Wu CL (2005) Biomaterial 26:729

    Article  Google Scholar 

  5. Song Q, Zhang ZJ (2004) J Am Chem Soc 126:6164

    Article  Google Scholar 

  6. Kodama RH, Berkowitz AE, Niff EJ Mc, Foner S (1996) Phys Rev Lett 77:394

    Article  Google Scholar 

  7. Shafi KVPM, Koltypin Y, Gedanken A, Prozorov R, Balogh J, Lendvai J, Felner I (1997) J Phys Chem B 101:6409

    Article  Google Scholar 

  8. Calvin S, Carpenter EE, Harris VG, Morrison SA (2002) Phys Rev B 66:224405

    Article  Google Scholar 

  9. Jonsson T, Svedlindh P, Hansen MF (1998) Phys Rev Lett 81:3976

    Article  Google Scholar 

  10. Otero JG, Porto M, Rivas J, Bunde A (2000) Phys Rev Lett 84:167

    Article  Google Scholar 

  11. Kodama RH, Berkowitz AE, McNiff EJ, Foner S (1996) Phys Rev Lett 77:394

    Article  Google Scholar 

  12. Nabiyouni G, Fesharaki MJ, Zolotovsky AA (2012) Task Quart 15:107

    Google Scholar 

  13. Gabal MA, Reda ME, Angari YMA (2012) J Magn Magn Mater 324:2258

    Article  Google Scholar 

  14. Phadatare MR, Khot VM, Salunkhe AB, Thorat ND, Pawar SH (2012) J Magn Magn Mater 324:770

    Article  Google Scholar 

  15. Ramakrishna K, Ravinder D, Vijaya Kumar K, Abraham Lincon Ch (2012) World J Condens Mater Phys 2:153

  16. Zabotto FL, Gualdi AJ, Eiras JA, de Oliveira AJA, Garcia D (2012) Mater Res 5(3):428

    Article  Google Scholar 

  17. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2012) Mater Lett 66:314

    Article  Google Scholar 

  18. Chen D, Liu H (2012) Mater Lett 72:95

    Article  Google Scholar 

  19. Ilmars Z, Gundega H, Maris K, Janis G, Mikhail M (2012) Mater Sci 18:1392

    Google Scholar 

  20. Chen DH, He X (2001) Mater Res Bull 36:1369

    Article  Google Scholar 

  21. Sankaranarayanan VK, Sreekumar C (2003) Curr Appl Phys 3:205

    Article  Google Scholar 

  22. Shahmirzaei M, Ebrahimi AS, Dehghan R (2011) Mod Phys Lett B 25:855

    Article  Google Scholar 

  23. Bhavikatti AM, Kulkarni S, Lagashetty A (2011) Int J Eng Sci Tech 3:687

    Google Scholar 

  24. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) Tetra Lett 27:279

    Article  Google Scholar 

  25. Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Tetra Lett 27:4945

    Article  Google Scholar 

  26. Nathani H, Gubbala S, Misra RDK (2005) Mater Sci Eng B 121(1–2):126

    Article  Google Scholar 

  27. Kodama RH, Berkowitz AE, McNiff JEJ, Foner S (1996) Phys Rev Lett 77(2):394

    Article  Google Scholar 

  28. Manova E, Tsoncheva T, Estournes C, Paneva D, Tenchev K, Mitov I, Petrov L (2006) Appl Catal A 300(2):170

    Article  Google Scholar 

  29. Li GY, Jiang YR, Huang KL, Ding P, Chen J (2008) J Alloys Compd 466(1–2):451

    Article  Google Scholar 

  30. Pazik R, Piaseck E, Małecka M, Kessler VG, Idzikowski B, Sniadeckid Z, Wiglusz RJ (2013) RSC Adv 3:12230

    Article  Google Scholar 

  31. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Mater Lett 65:1438

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Brain Korea 21 Program of South Korean Research Foundation and Changwon National University, South Korea. One of the authors Ramakrishna Reddy Rajuru thanks University Grants Commission (UGC), New Delhi for providing Basic Science Research (BSR) faculty fellowship during this time when part of the work has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Penchal Reddy or K. S. Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penchal Reddy, M., Madhuri, W., Sadhana, K. et al. Microwave sintering of nickel ferrite nanoparticles processed via sol–gel method. J Sol-Gel Sci Technol 70, 400–404 (2014). https://doi.org/10.1007/s10971-014-3295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3295-7

Keywords

Navigation