Journal of Sol-Gel Science and Technology

, Volume 70, Issue 1, pp 133–141 | Cite as

Modifications in band gap and optical properties of Zn0.96−xNd0.04CuxO (x = 0, 0.05, 0.1 and 0.15) nanoparticles

Original Paper


Nd-doped and Nd, Cu co-doped ZnO nanoparticles (Zn0.96−xNd0.04CuxO, x = 0, 0.05, 0.1 and 0.15) were synthesized by sol–gel method. The structural and optical properties of the samples were investigated by X-ray diffraction (XRD) and UV–visible photo-spectrometer. The synthesized nanoparticles have different microstructure without changing a hexagonal wurtzite structure. CuO phase was noticed in XRD spectra at 38.73° after Cu = 5 % which was formed from remaining un-reacted Cu2+ ions. The average crystal size was gradually increased from Cu = 0 % (17 nm) to 15 % (17.6 nm) having lowest value (16.7 nm) at Cu = 5 %. The change in lattice parameters confirmed the substitution of Cu in Zn–Nd–O lattice. The observed constant c/a ratio revealed that there was no change in hexagonal wurtzite structure by Cu-doping. The energy dispersive X-ray spectra confirmed the presence of appropriate amount of Nd and Cu in Zn–O lattice. The optical absorption was increased gradually from Cu = 0–10 % and showed maximum at Cu = 10 % due to the presence of more nucleation centres and defect states. The defects related green band between 487 and 493 nm was due to the oxygen vacancies and intrinsic defects. The higher transmittance (≈ 90 %) noticed at Cu = 15 % leads to the industrial applications. The observed blue shift in energy gap from 3.49 eV (Cu = 0 %) to 3.65 eV (Cu = 10 %) and the red shift from Cu = 10 % (3.65 eV) to Cu = 15 % (3.61 eV) can be explained by the Burstein–Moss effect. Presence of chemical bonding was confirmed by Fourier transform infrared spectra.


Nd Cu co-doped ZnO Energy gap Microstructure Optical property FTIR spectra 



The authors are thankful to the University Grant Commission, Hyderabad, for financial support under the project [File No.: MRP- 4317/12 (MRP/UGC-SERO)].


  1. 1.
    Pearton SJ, Norton DP, Lp K, Heo YW, Steiner T (2004) J Vac Sci Tech B 932:1714985Google Scholar
  2. 2.
    Roy B, Chakrabarty S, Mondal O, Pal P, Dutta A (2012) Mater Character 70:1CrossRefGoogle Scholar
  3. 3.
    Tao YM, Ma SY, Chen HX, Meng JX, Hou LL, Jia YF, Shang XR (2011) Vacuum 85:744CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Yi JB, Ding J, Wong LM, Seng HL, Wang SJ, Tao JG, Li GP, Xing GZ, Sum TC, Huan CHA, Wu T (2008) J Phys Chem C 112:9579CrossRefGoogle Scholar
  5. 5.
    Hwang CC, Wu TW (2004) J Mater Sci 39:6111CrossRefGoogle Scholar
  6. 6.
    Saleh R, Prakoso SP, Fishli A (2012) J Magn Magn Mater 324(5):665CrossRefGoogle Scholar
  7. 7.
    Cheng ZX, Wang XL, Dou SX, Ozawa K, Kimura H, Munroe P (2007) Fabrication. J Phys D Appl Phys 40:6518CrossRefGoogle Scholar
  8. 8.
    Roy B, Mondal O, Sen D, Bahadur J, Mazumder S, Pal M (2011) J Appl Crystallogr 44:991CrossRefGoogle Scholar
  9. 9.
    Ungureanu M, Schmidt H, Xu Q, von Wenckstern H, Spemann D, Hochmuth H (2007) Superlattices Microstruct 42:231CrossRefGoogle Scholar
  10. 10.
    Chao LC, Huang JW, Chang CW (2009) Phys B 404:1301CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Lu SX, Xu WG (2009) Environ Prog Sustain Energy 28:226CrossRefGoogle Scholar
  12. 12.
    Reddy AJ, Kokila MK, Nagabhushan H, Chakradhar RPS, Shivakumar C, Rao JL, Nagabhushan BM (2011) J Alloys Compd 509:5349CrossRefGoogle Scholar
  13. 13.
    Wang D, Zhou J, Liu G (2009) J Alloys Compd 487:545CrossRefGoogle Scholar
  14. 14.
    Sharma PK, Kumar M, Pandey AC (2011) J Nanopart Res 13:1629CrossRefGoogle Scholar
  15. 15.
    Lee JB, Lee HJ, Seo SH, Park JS (2001) Thin Solid Films 398–399:641CrossRefGoogle Scholar
  16. 16.
    Anbuselvan D, Muthukumaran S (2013) J Sol–Gel Sci Technol 65:255CrossRefGoogle Scholar
  17. 17.
    Hankare PP, Chate PA, Sathe DJ, Chavan PA, Bhuse VM (2009) J Mater Sci Mater Electron 20:374CrossRefGoogle Scholar
  18. 18.
    Pelleg J, Elish E (2002) J Vac Sci Technol A 20:754CrossRefGoogle Scholar
  19. 19.
    Cullity BD (1978) Elements of X-ray diffractions. Addison-Wesley, ReadingGoogle Scholar
  20. 20.
    Srinivasan G, Kumar RTR, Kumar J (2007) J Sol–Gel Sci Technol 43:171CrossRefGoogle Scholar
  21. 21.
    Kulyk B, Sahraoui B, Figà V, Turko B, Rudyk V, Kapustianyk V (2009) J Alloys Compd 481:819CrossRefGoogle Scholar
  22. 22.
    Kim CO, Kim S, Oh HT, Choi SH, Shon Y, Lee S, Hwang HN, Hwang CC (2010) Phys B 405:4678CrossRefGoogle Scholar
  23. 23.
    Lupan O, Pauporte T, Chow L, Viana B, Pelle F, Ono LK, Cuenya BR, Heinrich H (2010) Appl Surf Sci 256:1895CrossRefGoogle Scholar
  24. 24.
    Huang MH, Wu YY, Feich HN, Tran N, Weber E, Yang PD (2001) Adv Mater 13:113CrossRefGoogle Scholar
  25. 25.
    Li C, Fang G, Fu Q, Su F, Li G, Wu X, Zhao X (2006) J Cryst Growth 292:19CrossRefGoogle Scholar
  26. 26.
    Garces NY, Wang L, Bai L, Giles NC, Halliburtan LE, Cantwell G (2002) Appl Phys Lett 81:622CrossRefGoogle Scholar
  27. 27.
    Huang MH, Wu YY, Feich HN, Tran N, Weber E, Yang PD (2001) Adv Mater 13:113CrossRefGoogle Scholar
  28. 28.
    Wilson JN, Bangcuyo CG, Erdogan B, Myrick ML, Bunz UHF (2003) Macromolecules 36:1426CrossRefGoogle Scholar
  29. 29.
    Palomino AP, Perez OP, Singhal R, Tomar M, Hwang J, Voyles PM (2008) J Appl Phys 103:07D121Google Scholar
  30. 30.
    Laurent K, Yu DP, Tusseau-Nenez S, Leprince-Wang Y (2008) J Phys D Appl Phys 41:195410CrossRefGoogle Scholar
  31. 31.
    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, parts- A and B. John Wiley and Sons, New YorkGoogle Scholar
  32. 32.
    Li XY, Lia HJ, Yuan M, Wang ZJ, Zhou ZY, Xu RB (2011) J Alloys Compd 509:3025CrossRefGoogle Scholar
  33. 33.
    Arshad M, Azam A, Ahmea AS, Mollah S, Naqvi AH (2011) J Alloys Compd 509:8378CrossRefGoogle Scholar
  34. 34.
    Senthilkumar S, Rajendran K, Banerjee S, Chini TK, Sengodan V (2008) Mater Sci Semi Process 11:6CrossRefGoogle Scholar
  35. 35.
    Sadtler Research Laboratories (ed.), The infrared spectra handbook of inorganic compounds (Heyden and Son Ltd., London, 1984)Google Scholar
  36. 36.
    Kleinwechter H, Janzen C, Knipping J, Wiggers H, Roth P (2002) J Mater Sci 7:4349CrossRefGoogle Scholar
  37. 37.
    Aljawfi RN, Mollah S (2011) J Magn Magn Mater 323:3126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.PG and Research Department of PhysicsH.H. The Rajah’s College (Autonomous)PudukkottaiIndia

Personalised recommendations