Journal of Sol-Gel Science and Technology

, Volume 69, Issue 3, pp 528–535 | Cite as

Preparation and application of poly(alkoxytitanate) as a TiO2 precursor with high storage stability

  • Qizheng Dou
  • Karin Peter
  • Dan Eugen Demco
  • Jingbo Wang
  • Ahmed Mourran
  • Manfred Jaumann
  • Martin Moeller
Original Paper


Titanium dioxide is a basic material of our daily life. Because of its favourable properties, such as harmlessness, chemical stability, photocatalytic activity, or whiteness it is increasingly applied in both micro and nano particles and thin films and coating. One of the available procedures for film forming is the sol–gel technology, an inexpensive low temperature process with wide possibilities to vary film properties by changing the composition of the precursor solution or other parameters. In the paper a new precursor polymer for TiO2 film-preparation with high storage and processing stabilities is introduced and applied in thin film forming. The new precursor poly(alkoxytitanate) is prepared by a one step, water-free sol–gel method. A smooth TiO2 film can be prepared using this precursor by spin-coating followed by H2-plasma curing. Comparing to a common precursor such as Ti(O–iPr)4, this precursor has a good solubility in different solvents and a much higher storage stability. The easy to modify precursor end groups enable the tailoring of properties regarding to hydrolysis to both TiO2 particles and films.


Water free sol–gel technology TiO2 precursor polymer Hydrolytic stability Film formation 



The financial support of the Deutsche Forschungsgemeinschaft (Project MO682/12-1) is gratefully acknowledged.


  1. 1.
    Fujishima A, Honda K, Kikuchi K (1969) Kogyo Kagaku Zasshi 72:108–113CrossRefGoogle Scholar
  2. 2.
    Frank SN, Bard AJ (1977) J Phys Chem 81(15):1484–1488CrossRefGoogle Scholar
  3. 3.
    Schwitzgebel J, Ekerdt JG, Gerischer H, Heller A (1995) J Phys Chem 99(15):5633–5638CrossRefGoogle Scholar
  4. 4.
    Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) J Phys Chem 89(23):5017–5021CrossRefGoogle Scholar
  5. 5.
    Heller A (1995) Acc Chem Res 28(12):503–508CrossRefGoogle Scholar
  6. 6.
    Yoko T, Hu LL, Kozuka H, Sakka S (1996) Thin Solid Films 283(1–2):188–195CrossRefGoogle Scholar
  7. 7.
    O’Shea KE, Pernas E, Saiers J (1999) Langmuir 15(6):2071–2076CrossRefGoogle Scholar
  8. 8.
    Sawunyama P, Fujishima A, Hashimoto K (1999) Langmuir 15(10):3551–3556CrossRefGoogle Scholar
  9. 9.
    Thompson DW, Kelly CA, Farzad F, Meyer GJ (1999) Langmuir 15(3):650–653CrossRefGoogle Scholar
  10. 10.
    Harris CS (2003) Glass Res 12:32Google Scholar
  11. 11.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Nature 388(6641):431–432CrossRefGoogle Scholar
  12. 12.
    Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Thin Solid Films 351(1–2):260–263CrossRefGoogle Scholar
  13. 13.
    Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1994) Chem Lett 4:723–726CrossRefGoogle Scholar
  14. 14.
    Paz Y, Luo Z, Rabenberg L, Heller A (1995) J Mater Res 10(11):2842–2848CrossRefGoogle Scholar
  15. 15.
    Tunesi S, Anderson M (1991) J Phys Chem 95(8):3399–3405CrossRefGoogle Scholar
  16. 16.
    Papp J, Shen HS, Kershaw R, Dwight K, Wold A (1993) Chem Mater 5(3):284–288CrossRefGoogle Scholar
  17. 17.
    Langlet M, Kim A, Audier M, Herrmann JM (2002) J Sol–Gel Sci Technol 25(3):223–234CrossRefGoogle Scholar
  18. 18.
    Negishi N, Iyoda T, Hashimoto K, Fujishima A (1995) Chem Lett 9:841–842CrossRefGoogle Scholar
  19. 19.
    Chhabra V, Pillai V, Mishra BK, Morrone A, Shah DO (1995) Langmuir 11(9):3307–3311CrossRefGoogle Scholar
  20. 20.
    Weinberger BR, Garber RB (1995) Appl Phys Lett 66(18):2409–2411CrossRefGoogle Scholar
  21. 21.
    Cao LX, Spiess FJ, Huang AM, Suib SL, Obee TN, Hay SO, Freihaut JD (1999) J Phys Chem B 103(15):2912–2917CrossRefGoogle Scholar
  22. 22.
    Kawai T, Sakata T (1980) Nature 286(5772):474–476CrossRefGoogle Scholar
  23. 23.
    Negishi N, Takeuchi K, Ibusuki T (1997) Appl Surf Sci 121:417–420CrossRefGoogle Scholar
  24. 24.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32(1–2):33–177CrossRefGoogle Scholar
  25. 25.
    Sakai N, Fujishima A, Watanabe T, Hashimoto K (2001) J Phys Chem B 105(15):3023–3026Google Scholar
  26. 26.
    Blossey R (2003) Nat Mater 2(5):301–306CrossRefGoogle Scholar
  27. 27.
    Seemann R, Monch W, Herminghaus S (2001) Europhys Lett 55(5):698–704CrossRefGoogle Scholar
  28. 28.
    Huppert HE (1982) Nature 300(5891):427–429CrossRefGoogle Scholar
  29. 29.
    Fuyuki T, Matsunami H(1986) Jpn J Appl Phys Part 1 25(9):1288–1291Google Scholar
  30. 30.
    Bertrand PA, Fleischauer PD (1983) Thin Solid Films 103(1–2):167–175CrossRefGoogle Scholar
  31. 31.
    Lu JP, Wang JD, Raj R (1991) Thin Solid Films 204(1):L13–L17CrossRefGoogle Scholar
  32. 32.
    Morris HB, Plano (1978) Tex method of depositing titanium dioxide (rutile) as a gate dielectric for MIS device fabrication. 4,200,474Google Scholar
  33. 33.
    Lottiaux M, Boulesteix C, Nihoul G, Varnier F, Flory F, Galindo R, Pelletier E (1989) Thin Solid Films 170(1):107–126CrossRefGoogle Scholar
  34. 34.
    Suhail MH, Rao GM, Mohan S (1992) J Appl Phys 71(3):1421–1427CrossRefGoogle Scholar
  35. 35.
    Schroder H (1969) Physics of thin films. Academic, New York, vol 5, p 87Google Scholar
  36. 36.
    Yoldas BE, Okeeffe TW (1979) Appl Opt 18(18):3133–3138CrossRefGoogle Scholar
  37. 37.
    Zhu XM, Jaumann M, Peter K, Moller M, Melian C, Adams-Buda A, Demco DE, Blumich B (2006) Macromolecules 39(5):1701–1708CrossRefGoogle Scholar
  38. 38.
    NMR-Reference, 2 edn. vol 1, p 508Google Scholar
  39. 39.
    Davidson MG, Johnson AL, Jones MD, Lunn MD, Mahon MF (2007) Polyhedron 26:975–980CrossRefGoogle Scholar
  40. 40.
    Berger S, Smith WB, Marth CF, Raguse B, Reetz MT (1990) Magn Reson Chem 28(559-560559-560):559–560Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Qizheng Dou
    • 1
  • Karin Peter
    • 1
  • Dan Eugen Demco
    • 1
  • Jingbo Wang
    • 1
  • Ahmed Mourran
    • 1
  • Manfred Jaumann
    • 1
  • Martin Moeller
    • 1
  1. 1.AachenGermany

Personalised recommendations