Skip to main content
Log in

Preparation and application of poly(alkoxytitanate) as a TiO2 precursor with high storage stability

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Titanium dioxide is a basic material of our daily life. Because of its favourable properties, such as harmlessness, chemical stability, photocatalytic activity, or whiteness it is increasingly applied in both micro and nano particles and thin films and coating. One of the available procedures for film forming is the sol–gel technology, an inexpensive low temperature process with wide possibilities to vary film properties by changing the composition of the precursor solution or other parameters. In the paper a new precursor polymer for TiO2 film-preparation with high storage and processing stabilities is introduced and applied in thin film forming. The new precursor poly(alkoxytitanate) is prepared by a one step, water-free sol–gel method. A smooth TiO2 film can be prepared using this precursor by spin-coating followed by H2-plasma curing. Comparing to a common precursor such as Ti(O–iPr)4, this precursor has a good solubility in different solvents and a much higher storage stability. The easy to modify precursor end groups enable the tailoring of properties regarding to hydrolysis to both TiO2 particles and films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujishima A, Honda K, Kikuchi K (1969) Kogyo Kagaku Zasshi 72:108–113

    Article  Google Scholar 

  2. Frank SN, Bard AJ (1977) J Phys Chem 81(15):1484–1488

    Article  Google Scholar 

  3. Schwitzgebel J, Ekerdt JG, Gerischer H, Heller A (1995) J Phys Chem 99(15):5633–5638

    Article  Google Scholar 

  4. Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) J Phys Chem 89(23):5017–5021

    Article  Google Scholar 

  5. Heller A (1995) Acc Chem Res 28(12):503–508

    Article  Google Scholar 

  6. Yoko T, Hu LL, Kozuka H, Sakka S (1996) Thin Solid Films 283(1–2):188–195

    Article  Google Scholar 

  7. O’Shea KE, Pernas E, Saiers J (1999) Langmuir 15(6):2071–2076

    Article  Google Scholar 

  8. Sawunyama P, Fujishima A, Hashimoto K (1999) Langmuir 15(10):3551–3556

    Article  Google Scholar 

  9. Thompson DW, Kelly CA, Farzad F, Meyer GJ (1999) Langmuir 15(3):650–653

    Article  Google Scholar 

  10. Harris CS (2003) Glass Res 12:32

    Google Scholar 

  11. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Nature 388(6641):431–432

    Article  Google Scholar 

  12. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Thin Solid Films 351(1–2):260–263

    Article  Google Scholar 

  13. Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1994) Chem Lett 4:723–726

    Article  Google Scholar 

  14. Paz Y, Luo Z, Rabenberg L, Heller A (1995) J Mater Res 10(11):2842–2848

    Article  Google Scholar 

  15. Tunesi S, Anderson M (1991) J Phys Chem 95(8):3399–3405

    Article  Google Scholar 

  16. Papp J, Shen HS, Kershaw R, Dwight K, Wold A (1993) Chem Mater 5(3):284–288

    Article  Google Scholar 

  17. Langlet M, Kim A, Audier M, Herrmann JM (2002) J Sol–Gel Sci Technol 25(3):223–234

    Article  Google Scholar 

  18. Negishi N, Iyoda T, Hashimoto K, Fujishima A (1995) Chem Lett 9:841–842

    Article  Google Scholar 

  19. Chhabra V, Pillai V, Mishra BK, Morrone A, Shah DO (1995) Langmuir 11(9):3307–3311

    Article  Google Scholar 

  20. Weinberger BR, Garber RB (1995) Appl Phys Lett 66(18):2409–2411

    Article  Google Scholar 

  21. Cao LX, Spiess FJ, Huang AM, Suib SL, Obee TN, Hay SO, Freihaut JD (1999) J Phys Chem B 103(15):2912–2917

    Article  Google Scholar 

  22. Kawai T, Sakata T (1980) Nature 286(5772):474–476

    Article  Google Scholar 

  23. Negishi N, Takeuchi K, Ibusuki T (1997) Appl Surf Sci 121:417–420

    Article  Google Scholar 

  24. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32(1–2):33–177

    Article  Google Scholar 

  25. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2001) J Phys Chem B 105(15):3023–3026

    Google Scholar 

  26. Blossey R (2003) Nat Mater 2(5):301–306

    Article  Google Scholar 

  27. Seemann R, Monch W, Herminghaus S (2001) Europhys Lett 55(5):698–704

    Article  Google Scholar 

  28. Huppert HE (1982) Nature 300(5891):427–429

    Article  Google Scholar 

  29. Fuyuki T, Matsunami H(1986) Jpn J Appl Phys Part 1 25(9):1288–1291

    Google Scholar 

  30. Bertrand PA, Fleischauer PD (1983) Thin Solid Films 103(1–2):167–175

    Article  Google Scholar 

  31. Lu JP, Wang JD, Raj R (1991) Thin Solid Films 204(1):L13–L17

    Article  Google Scholar 

  32. Morris HB, Plano (1978) Tex method of depositing titanium dioxide (rutile) as a gate dielectric for MIS device fabrication. 4,200,474

  33. Lottiaux M, Boulesteix C, Nihoul G, Varnier F, Flory F, Galindo R, Pelletier E (1989) Thin Solid Films 170(1):107–126

    Article  Google Scholar 

  34. Suhail MH, Rao GM, Mohan S (1992) J Appl Phys 71(3):1421–1427

    Article  Google Scholar 

  35. Schroder H (1969) Physics of thin films. Academic, New York, vol 5, p 87

  36. Yoldas BE, Okeeffe TW (1979) Appl Opt 18(18):3133–3138

    Article  Google Scholar 

  37. Zhu XM, Jaumann M, Peter K, Moller M, Melian C, Adams-Buda A, Demco DE, Blumich B (2006) Macromolecules 39(5):1701–1708

    Article  Google Scholar 

  38. NMR-Reference, 2 edn. vol 1, p 508

  39. Davidson MG, Johnson AL, Jones MD, Lunn MD, Mahon MF (2007) Polyhedron 26:975–980

    Article  Google Scholar 

  40. Berger S, Smith WB, Marth CF, Raguse B, Reetz MT (1990) Magn Reson Chem 28(559-560559-560):559–560

    Google Scholar 

Download references

Acknowledgment

The financial support of the Deutsche Forschungsgemeinschaft (Project MO682/12-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Peter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, Q., Peter, K., Demco, D.E. et al. Preparation and application of poly(alkoxytitanate) as a TiO2 precursor with high storage stability. J Sol-Gel Sci Technol 69, 528–535 (2014). https://doi.org/10.1007/s10971-013-3253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3253-9

Keywords

Navigation