Skip to main content
Log in

Atomic oxygen erosion resistance of sol–gel oxide films on Kapton

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica, alumina and silica-alumina composite films were deposited on Kapton substrate via sol–gel method and their atomic oxygen (AO) erosion resistance was test in a ground-based AO simulator. The surface morphology and the structure of as-deposited films were investigated by scanning electronic microscope, X-ray photoelectron spectroscopy, and Fourier transformed infrared spectroscopy. After AO exposure, more cracks and micro-pores appear on the surface of silica and alumina films, respectively. For the silica-alumina composite films, their toughness and densification are good, and the stable interface is formed between the alumina and silica phases. Therefore, the silica-alumina composite-coated Kapton shows the best AO resistance and the erosion yield is two orders of magnitude less than that of pristine Katpon. Moreover, the composite-coated Kapton remains optically stable under AO exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reddy MR (1995) J Mater Sci 30:281–307

    Article  Google Scholar 

  2. Packirisamy S, Schwam D, Litt MH (1995) J Mater Sci 30:308–320

    Article  Google Scholar 

  3. Hench LL, West JK (1990) Chem Rev 90:33–72

    Article  Google Scholar 

  4. Ding XZ, He YZ, Dong Y (1994) Mater Sci Eng 12:1–8

    Article  Google Scholar 

  5. Zhang X, Wu YY, Liu G et al (2008) Thin Solid Films 516:5020–5026

    Article  Google Scholar 

  6. Xie YY, Gao Y, Qin XG et al (2012) Surf Coat Technol 206:4384–4388

    Article  Google Scholar 

  7. Xing A, Gao Y, Yin JG et al (2010) Appl Surf Sci 256:6133–6138

    Article  Google Scholar 

  8. Xiao F, Wang K, Zhan MS (2010) Appl Surf Sci 256:7384–7388

    Article  Google Scholar 

  9. Duo SW, Li MS, Zhu M et al (2008) Mater Chem Phys 112:1093–1098

    Article  Google Scholar 

  10. Duo SW, Li MS, Zhu M et al (2006) Surf Coat Technol 200:6671–6677

    Article  Google Scholar 

  11. Zhang X, Wu YY, He SY et al (2009) Mater Chem Phys 114:179–184

    Article  Google Scholar 

  12. Zhang X, Wu YY, He SY et al (2007) Surf Coat Technol 201:6051–6058

    Article  Google Scholar 

  13. Zhang X, Wu YY, He SY (2010) Hebei J Ind Sci Technol 27:149–152 (in Chinese)

    Google Scholar 

  14. Banks BA, de Groh KK, Bansey-Barton E et al (1996) SAE Tech Pap Ser 01:2695

    Google Scholar 

  15. Kurokawa Y, Suga T, Nakata S et al (1998) J Mater Sci Lett 17:275–278

    Article  Google Scholar 

  16. Pach L, Majling J (2000) J Sol Gel Sci Technol 18:99–103

    Article  Google Scholar 

  17. Banks BA, Miller SK, de Groh KK (2004) NASA/TM 213223

  18. Grossman E, Lifshitz Y, Wolan JT et al (1999) J Spacecr Rockets 36:75–78

    Article  Google Scholar 

  19. Golub MA, Wydeven T, Cormia RD (1988) Polym Commun 29:285–288

    Google Scholar 

  20. Herreros B, He H, Barr TL et al (1994) J Phys Chem 98:1302–1305

  21. Parola VL, Deganello G, Scire S et al (2003) J Solid State Chem 174:482–488

    Google Scholar 

  22. Orefice RL, Vasconcelos WL (1997) J Sol Gel Sci Technol 9:239–249

    Google Scholar 

  23. Urretavizcaya G, Cavalieri AL, Lopez JMP et al (1998) J Mater Synth Process 6:1–7

    Article  Google Scholar 

  24. Innocenzi P (2003) J Non Cryst Solids 316:309–319

    Article  Google Scholar 

  25. Padmaja P, Warrier KGK, Padmanabhan M et al (2006) Mater Chem Phys 95:56–61

    Article  Google Scholar 

  26. Fang YT, Liang XH, Fan J (2004) Chin J Mater Res 18:641–646 (in Chinese)

    Google Scholar 

  27. Wang XC, Shi SL, Cheng ZQ et al (2000) Chin J Mater Res 14:51–55 (in Chinese)

    Google Scholar 

  28. Fuller J Final Performance Report Grant: F49620-02-1-0323

Download references

Acknowledgments

This study was supported by the Hebei Education Department Project of China (QN20131015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Mao, L., Du, J. et al. Atomic oxygen erosion resistance of sol–gel oxide films on Kapton. J Sol-Gel Sci Technol 69, 498–503 (2014). https://doi.org/10.1007/s10971-013-3249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3249-5

Keywords

Navigation