Journal of Sol-Gel Science and Technology

, Volume 70, Issue 2, pp 254–262 | Cite as

Mesoporous and mesostructured TiO2 coatings for photocatalytic applications

  • Yolanda Castro
  • Alicia Durán
Original Paper


The correlation between the textural properties and the photocatalytic activity of nanocrystalline Titanium dioxide (TiO2)-anatase films obtained by sol–gel has been investigated. Mesoporous and mesostructured TiO2-anatase films were prepared using different titanium precursors and Pluronic (F127) and polyethylene glycol hexadecyl ether P5884 (Brij58) surfactants via acid catalysis. Ca(NO3)2 and WCl6 were incorporated to TiO2 sols to investigate the effect of the doping on the photocatalytic behaviour. The microstructure and textural properties were characterised by X-ray diffraction, spectral ellipsometry and transmission electronic microscopy. The photocatalytic properties were evaluated in aqueous solution (methyl orange) and in gas phase (trichloroethylene, sulphide acid and methyl-ethyl-ketone) using multilayer films deposited on glass-slides. TiO2-B-Brij-58 films exhibited the most efficient photocatalytic activity either in aqueous or gas medium. The Ca doping strongly enhances the photocatalytic activity associated with the reduced recombination of electrons and holes in the catalyst.


TiO2-anatase Sol–gel coatings Photocatalysis TCE H2MEK Methyl orange 



The authors thank Dr. Valerie Héquet from École des Mines de Nantes (Nantes, France) and Dr. Benigno Sánchez from CIEMAT-PSA (Madrid, Spain) for their collaboration in the photocatalytic characterisation.


  1. 1.
    Fang V, Futter J, Kennedy J, Manning J (2013) GNS Sci Rep 39:1–23Google Scholar
  2. 2.
    Siva Rama Krishna D, Sun Y (2005) Appl Surf Sci 252:1107–1109CrossRefGoogle Scholar
  3. 3.
    Shan CX, Hou X, Choy K (2008) Surf Coat Technol 202:2399–2402CrossRefGoogle Scholar
  4. 4.
    Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93(2):671–698CrossRefGoogle Scholar
  5. 5.
    Kamat PV, Vinodgopal K (1993) Photocatalytic purification and treatment of water and air. In: Ollis DF, Al-Ekabi H (eds) Elsevier, Amsterdam, p 8Google Scholar
  6. 6.
    Peral J, Domènech X, Ollis F (1997) J Chem Technol Biotechnol 70:117–140CrossRefGoogle Scholar
  7. 7.
    Padikkaparambil S, Yaakob Z, Narayanan BN, Ramakrishnan R, Viswanathan S (2012) J Sol–Gel Sci Technol 63:108–115CrossRefGoogle Scholar
  8. 8.
    Hashimoto K, Irie H, Fujishima A (2005) J Appl Phys 44:8269–8285CrossRefGoogle Scholar
  9. 9.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33–36CrossRefGoogle Scholar
  10. 10.
    Zhao J, Yang X (2003) Build Environ 38:645–654CrossRefGoogle Scholar
  11. 11.
    Prousek J (1996) Chemical processes. Chemické Listy 90(4):229–235Google Scholar
  12. 12.
    Burgess JE, Parsons SA, Stuetz RM (2001) Biotechnol Adv 19(1):35–63CrossRefGoogle Scholar
  13. 13.
    Linsebigle A, Lu G, Yates J (1995) Chem Rev 95:735–758CrossRefGoogle Scholar
  14. 14.
    Ohtani B, Ogawa Y, Nishimoto S (1997) J Phys Chem B 101:3746–3752CrossRefGoogle Scholar
  15. 15.
    Nakajima A, Koizumi S, Watanabe T, Hashimoto K (2001) J Photochem Photobiol A 146:129–132CrossRefGoogle Scholar
  16. 16.
    Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Chem Mater 14:3808–3816Google Scholar
  17. 17.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271CrossRefGoogle Scholar
  18. 18.
    Yang M, Hume C, Lee S, Son YH, Lee JK (2010) J Phys Chem C 144:15292–15297CrossRefGoogle Scholar
  19. 19.
    Okamoto K, Yamamoto Y, Tanaka H, Itaya A (1985) Chem Soc Jpn 58:2015–2022CrossRefGoogle Scholar
  20. 20.
    Arconada N, Castro Y, Durán A (2010) Appl Catal A 385:101–107CrossRefGoogle Scholar
  21. 21.
    Arconada N, Durán A, Suarez S, Portela R, Coronado JM, Sanchez B, Castro Y (2009) Appl Catal B Environ 86:1–7CrossRefGoogle Scholar
  22. 22.
    Dvoranová D, Brezová V, Mazúr M, Malati MA (2002) Appl Catal B Environ 37:91–105CrossRefGoogle Scholar
  23. 23.
    Yang Y, Wang H, Li X, Wang C (2009) Mater Lett 63:331–333CrossRefGoogle Scholar
  24. 24.
    Yang Y, Li XJ, Chen JT, Wang LY (2004) J Photochem Photobiol A 163:517–522CrossRefGoogle Scholar
  25. 25.
    Al-Salim NI, Bagshaw SA, Bittar A, Kemmitt T, Macquillan AJ, Millsa AM, Ryana MJ (2000) J Mater Chem 10:2358–2363CrossRefGoogle Scholar
  26. 26.
    Portela R, Suárez S, Rasmussen SB, Arconada N, Castro Y, Durán A, Ávila P, Coronado JM, Sánchez B (2010) Catal Today 151:64–70CrossRefGoogle Scholar
  27. 27.
    Arconada N, Castro Y, Durán A, Héquet V (2011) Appl Catal B Environ 107:52–58CrossRefGoogle Scholar
  28. 28.
    Jung MW, Oh HJ, Yang JC, Shul YG (1999) Bull Korean Chem Soc 20:1394–1398Google Scholar
  29. 29.
    Guglielmi M, Brusatin G, Tombolan N (1993) Riv Staz Sper Vetro Sup 23:495–498Google Scholar
  30. 30.
    Nam HJ, Amemiya T, Murabayashi M, Itoh K (2004) J Phys Chem B 108:8254–8259CrossRefGoogle Scholar
  31. 31.
    Nocuń M, Burcon D, Siwulski S (2008) Opt Appl 38:171–179Google Scholar
  32. 32.
    Boissiere C, Grosso D, Lepotre S, Nicole L, Brunet AB, Sánchez C (2005) Langmuir 21:12362–12371CrossRefGoogle Scholar
  33. 33.
    Wang W, Tao J, Wang T, Wang L (2007) Rare Met 26:136–141CrossRefGoogle Scholar
  34. 34.
    Suarez S, Arconada N, Castro Y, Coronado JM, Portela R, Sanchez B, Duran A (2011) Appl Catal B Environ 108–109:14–21CrossRefGoogle Scholar
  35. 35.
    Chen Y, Dionysiou DD (2006) Appl Catal B Environ 24:67–75Google Scholar
  36. 36.
    Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Chem Mater 11:2813–2826Google Scholar
  37. 37.
    Boettcher SW, Bartl MH, Hu JG, Stucky GD (2005) J Am Chem Soc 127:9721–9730CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Instituto de Cerámica y Vidrio (ICV-CSIC)MadridSpain

Personalised recommendations