Journal of Sol-Gel Science and Technology

, Volume 69, Issue 1, pp 207–213 | Cite as

A new photoluminescent silica aerogel based on N-hydroxysuccinimide–Tb(III) complex

  • Corneliu Sergiu Stan
  • Nathalie Marcotte
  • Marius Sebastian Secula
  • Marcel Popa
Original Paper


The paper describes the preparation of a new photoluminescent silica aerogel by embedding a new Tb(III) complex in a silica matrix by using N-hydroxysuccinimide as ligand. The Tb(III) complex prepared at a metal to ligand ratio of 1:3 (mol%) exhibits strong photoluminescence as a result of specific radiative transitions within the Tb(III) cation with the most intense peak located at 543 nm due to 5D4 → 7F5 transition. The synthesized complex was doped in the silica matrix through a catalyzed sol–gel process. After ageing in ethanol, the alcogel was dried under supercritical regime by exchanging the ethanol with liquid carbon dioxide followed by supercritical evaporation. The leaching of the free complex from the alcogel during ageing and solvent exchange phases was found to be minimal most likely due to the interactions between chemical groups of complex with those specific to silica matrix. The obtained regular shaped monolithic aerogel preserved the remarkable photoluminescent properties and also improved the thermal stability of the free complex. Both, the free complex and doped aerogel were characterized through thermal analysis, FT-IR, powder X-ray diffraction, Scanning electron microscopy and fluorescence spectroscopy. For comparison purposes, an undoped silica aerogel was also prepared and investigated through FT-IR, BET analysis and powder X-ray diffraction. The excellent photoluminescent properties might recommend the prepared aerogel for applications in optoelectronic devices where photonic conversion materials are required.


Sol–gel method Functional composite Photoluminescent Tb(III) complexes Aerogel Luminescence 



This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0708.


  1. 1.
    Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) J Nanomater 2010:1–11CrossRefGoogle Scholar
  2. 2.
    Shewale PM, Rao AV, Rao AP, Bhagat SD (2009) J Sol–Gel Sci Technol 49:285–292CrossRefGoogle Scholar
  3. 3.
    Collinson MM (1998) Mikrochim Acta 129:149–165CrossRefGoogle Scholar
  4. 4.
    Glauser SAC, Lee HWH (1997) MRS Proc 471:331–334CrossRefGoogle Scholar
  5. 5.
    Lorenz C, Emmerling A, Fricke J, Schmidt T, Hilgendor M, Spanhel L, Muller G (1998) J Non-Cryst Solids 238:1–5CrossRefGoogle Scholar
  6. 6.
    Aegerter MA, Leventis N, Koebel M (2011) Aerogels handbook. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Sorensen L, Strouse GF, Stiegman AE (2006) Adv Mater 18:1965–1967CrossRefGoogle Scholar
  8. 8.
    Binnemans K (2009) Chem Rev 109:4283–4347CrossRefGoogle Scholar
  9. 9.
    Jin T, Tsutsumi S, Deguchi Y, Machida K, Adachi G (1997) J Alloys Compd 252:59–66CrossRefGoogle Scholar
  10. 10.
    Jin T, Inoue S, Machida K, Adachi G (1998) J Alloys Compd 265:234–239CrossRefGoogle Scholar
  11. 11.
    Godlewska P, Macalik L, Hanuza J (2008) J Alloys Compd 451:236–239CrossRefGoogle Scholar
  12. 12.
    Stan CS, Rosca I, Sutiman D, Secula MS (2012) J Rare Earth 30:401–407CrossRefGoogle Scholar
  13. 13.
    Soleimani DA, Abbasi MH (2008) J Mater Proc Technol 199:10–26CrossRefGoogle Scholar
  14. 14.
    Suh DJ, Park TJ, Sonn JH, Lim JC (1999) J Mater Sci Lett 18:1473–1475CrossRefGoogle Scholar
  15. 15.
    Pierre AC, Pajonk GM (2002) Chem Rev 102:4243–4246CrossRefGoogle Scholar
  16. 16.
    Premkumar T, Govindarajan S, Rath NP, Manivannan V (2009) Inorg Chim Acta 362:2941–2946CrossRefGoogle Scholar
  17. 17.
    Kim EJ, Kim CH, Kim JK, Yun SS (2008) Bull Korean Chem Soc 29:1157–1161CrossRefGoogle Scholar
  18. 18.
    Music S, Filipovic-Vincekovic N, Sekovanic L (2011) Braz J Chem Eng 28:89–94Google Scholar
  19. 19.
    Mane AU, Greene JP, Nolen JA, Sampathkumaran U, Owen TW, Winter R, Elam JW (2012) Appl Surf Sci 258:6472–6478CrossRefGoogle Scholar
  20. 20.
    Folgar C, Folz D, Suchicital C, Clark D (2007) J Non-Cryst Solids 353:1483–1490CrossRefGoogle Scholar
  21. 21.
    Zeng HC (2007) Curr Nanosci 3:177–181CrossRefGoogle Scholar
  22. 22.
    Cotton SA (2006) Lanthanide and actinide chemistry. Ed.Wiley & Sons, ChicesterCrossRefGoogle Scholar
  23. 23.
    Liu G, Jacquier B (2005) Spectroscopic properties of rare earth in optical materials. Springer, BerlinGoogle Scholar
  24. 24.
    Bunzli JCG, Piguet C (2005) Chem Soc Rev 34:1048–1077CrossRefGoogle Scholar
  25. 25.
    Kottas GS, Mehlstubl M, Fröhlich R, De Cola L (2007) Eur J Inorg Chem 2007:3465–3468CrossRefGoogle Scholar
  26. 26.
    Kang JG, Kim TJ (2005) Bull Korean Chem Soc 26:1057–1064CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Corneliu Sergiu Stan
    • 1
  • Nathalie Marcotte
    • 2
  • Marius Sebastian Secula
    • 1
  • Marcel Popa
    • 1
  1. 1.Faculty of Chemical Engineering and Environmental ProtectionGheorghe Asachi Technical University of IasiIasiRomania
  2. 2.Institut Charles Gerhardt MACSEcole Nationale Supérieure de Chimie de MontpellierMontpellier CedexFrance

Personalised recommendations