Advertisement

Journal of Sol-Gel Science and Technology

, Volume 69, Issue 1, pp 137–147 | Cite as

Structural stability and electrochemical properties of Gd-doped ZrO2 nanoparticles prepared by sol–gel

  • Noemí Montoya
  • Pablo Pardo
  • Antonio Doménech-Carbó
  • Javier Alarcón
Original Paper

Abstract

Cubic, tetragonal and monoclinic Gd-doped zirconia nanoparticles with nominal composition GdxZr1−xO2 in the range 0 ≤ x ≤ 0.2, were prepared by annealing dried gels of Gd-containing zirconia at temperatures over the range between 450 and 1,300 °C. The synthesized zirconia-based nanoparticles with increased gadolinium load were characterized by X-ray powder diffraction, infrared and Raman spectroscopies, and transmission electron microscopy. The stabilization of the crystalline forms of Gd-doped ZrO2 solid solutions depends on the amount of Gd dopant and the annealing temperature. For low Gd loads in GdxZr1−xO2 being x < 0.05, the tetragonal form is the single phase up to 1,100 °C, whereas the monoclinic is the crystalline form detected up to 1,300 °C. Within the range of compositions 0.05 ≤ x < 0.1, is the tetragonal the only stabilized zirconia crystalline structure over the whole range of temperature up to 1,300 °C. For higher Gd-contents, in the range 0.1 ≤ x ≤ 0.2, is the cubic zirconia form the only stable phase for the whole range of annealing temperatures. Solid-state electrochemistry of the gadolinium-doped zirconia performed by the voltammetry of microparticles approach allowed distinguishing different electrochemical answers of Gd cation associated with slightly different local coordination surrounding of cations. Enantioselective electrocatalytic effect of monoclinic Gd-doped ZrO2 on the oxidation of l-(+)-tartaric acid and d-(−)-tartaric was also studied.

Keywords

Gadolinium–zirconia solid solutions Nanoparticles Sol–gel preparation Electrochemical behaviour Enantioselectivity 

Notes

Acknowledgments

This work was financially supported by the Ministry of Science and Technology of Spain through project Consolider Ingenio 2010 CSD2010-00065 and Generalitat Valenciana through project Prometeo 2011/008.

References

  1. 1.
    Fernandez-Garcia M, Martinez-Arias A, Hanson J-C, Rodriguez J-A (2004) Nanostructured oxides in chemistry: characterization and Properties. Chem Rev 104:4063–4104CrossRefGoogle Scholar
  2. 2.
    Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol–Gel Sci Technol 40:259–266CrossRefGoogle Scholar
  3. 3.
    Zhou M, Ahmad A (2006) Synthesis, processing and characterization of calcia-stabilized zirconia solid electrolytes for oxygen sensing applications. Mater Res Bull 41:690–696CrossRefGoogle Scholar
  4. 4.
    Grain C-F (1967) Phase relations in the ZrO2–MgO system. J Amer Ceram Soc 50:288–290CrossRefGoogle Scholar
  5. 5.
    Valentín C, Folgado J-V, Alarcón J (2001) Low-temperature metastabilization of tetragonal V+4-containing ZrO2 solid solutions. Mat Res Bull 36:1615–1627CrossRefGoogle Scholar
  6. 6.
    Clavel G, Willinger M-C, Zitoun D, Pinna N (2008) Manganese-doped zirconia nanocrystals. Eur J Inorg Chem 6:863–868CrossRefGoogle Scholar
  7. 7.
    Chen L, Hu J, Richards R-M (2008) Catalytic properties of nanoscale iron-doped zirconia solid-solution aerogels. Chem Phys Chem 9:1069–1078CrossRefGoogle Scholar
  8. 8.
    Yashima M, Ishizawa N, Yoshimura M (1992) Application of an ion-packing model based on defect clusters to zirconia solid-solutions 2. Applicability of Vegard law. J Am Ceram Soc 75:1550–1557CrossRefGoogle Scholar
  9. 9.
    Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid–oxide fuel cell application. Solid State Ionics 86–88:1131–1149CrossRefGoogle Scholar
  10. 10.
    Yashima M, Ishizawa N, Yoshimura M (1993) High-temperature X-ray study of the cubic tetragonal diffusionless phase-transition in the ZrO2–ErO1.5 system 1. Phase-change between 2 forms of a tetragonal phase, t′-ZrO2 and t″-ZrO2, in the compositionally homogeneous 14 mol-pecent ErO1.5–ZrO2. J Am Ceram Soc 76:641–648CrossRefGoogle Scholar
  11. 11.
    Bhattacharyya S, Agrawal D-C (1995) Preparation of tetragonal ZrO2–Gd2O3 powders. J Mater Sci 30:1495–1499CrossRefGoogle Scholar
  12. 12.
    Muccillo E-N-S, Rocha R-A, Muccillo R (2002) Preparation of Gd2O3-doped ZrO2 by polymeric precursor techniques. Mater Lett 53:353–358CrossRefGoogle Scholar
  13. 13.
    Portinha A, Teixeira V, Cameiro J, Costa M-E, Barradas N-P, Sequeira A-D (2004) Stabilization of ZrO2 PVD coatings with Gd2O3. Surf Coat Technol 188–189:107–115CrossRefGoogle Scholar
  14. 14.
    Rahaman M-N, Gross J-R, Dutton R-E, Wang H (2006) Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2–Gd2O3 compositions for potential thermal barrier coating applications. Acta Mater 54:1615–1621CrossRefGoogle Scholar
  15. 15.
    Huang F, Chen D, Zhou J, Wang Y (2011) Modifying the phase and controlling the size of monodisperse ZrO2 nanocrystals by employing Gd3+ as a nucleation agent. Cryst Eng Commun 13:4500–4502CrossRefGoogle Scholar
  16. 16.
    Cushing B-L, Kolesnichenko V-L, O′Connor C-J (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefGoogle Scholar
  17. 17.
    Kessler V-G (2009) The chemistry behind the sol–gel synthesis of complex oxide nanoparticles for bio-imaging applications. J Sol–Gel Sci Technol 51:264–271CrossRefGoogle Scholar
  18. 18.
    F. Scholz, B. Meyer (1998) In: Electroanalytical chemistry, A series of advances, Bard AJ, Rubinstein I (eds), vol 20, Marcel Dekker, New York, 1–86Google Scholar
  19. 19.
    Grygar T, Marken F, Schröder U, Scholz F (2002) Electrochemical analysis of solids. A review. Collect Czech Chem Commun 67:163–208CrossRefGoogle Scholar
  20. 20.
    Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, BerlinGoogle Scholar
  21. 21.
    Doménech A, Alarcón J (2002) Electrochemistry of vanadium-doped tetragonal and monoclinic ZrO2 attached to graphite/polyester composite electrodes. J Solid State Electrochem 6:443–450CrossRefGoogle Scholar
  22. 22.
    Doménech A, Aucejo R, Alarcón J, Navarro P (2004) Electrocatalysis of the oxidation of methylenedioxyamphetamines at electrodes modified with cerium-doped zirconias. Electrochem Commun 6:719–723CrossRefGoogle Scholar
  23. 23.
    Doménech A, Alarcón J (2007) Microheterogeneous electrocatalytic chiral recognition at monoclinic vanadium-doped zirconias: enantioselective detection of glucose. Anal Chem 79:6742–6751CrossRefGoogle Scholar
  24. 24.
    Ooi T, Takeuchi M, Kameda M, Maruoka K (2000) Practical catalytic enantioselective synthesis of alpha, alpha-dialkyl-alpha-amino acids by chiral phase-transfer catalysis. J Am Chem Soc 122:5228–5229CrossRefGoogle Scholar
  25. 25.
    Francotte E, Lindner W (2006) Chirality in drug research. Wiley VCH, WeinheimCrossRefGoogle Scholar
  26. 26.
    Cai S–S, Hanold K-A, Syage J-A (2007) Comparison of atmospheric pressure photoionization and atmospheric pressure chemical ionization for normal-phase LC/MS chiral analysis of pharmaceuticals. Anal Chem 79:2491–2498CrossRefGoogle Scholar
  27. 27.
    Izake E-L (2007) Chiral discrimination and enantioselective analysis of drugs: an overview. J Pharm Sci 96:1659–1676CrossRefGoogle Scholar
  28. 28.
    Wong C-S (2006) Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Anal Bioanal Chem 386:544–558CrossRefGoogle Scholar
  29. 29.
    Kuhn A, Anson F-C (1996) Effects of chirality during electrochemical oxidation of 2,3 butanediol stereoisomers. J Electroanal Chem 410:243–246CrossRefGoogle Scholar
  30. 30.
    Scholz F, Gulaboski R, Mirceski V, Langer P (2002) Quantification of the chiral recognition in electrochemically driven ion transfer across the interface water/chiral liquid. Electrochem Commun 4:659–662CrossRefGoogle Scholar
  31. 31.
    Gao J, Njue C-K, Mbindyo J-K-N, Rusling J-F (1999) Mechanism of stereoselective synthesis of trans-1-decalone by electrochemical catalysis in microemulsions. J Electroanal Chem 464:31–38CrossRefGoogle Scholar
  32. 32.
    Doménech A, Ubeda M-A, Koshevoy I, Penno D (2008) Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines. Electrochim Acta 53:3416–3426CrossRefGoogle Scholar
  33. 33.
    Barrer R-M (1985) Utilization of d-tartaric acid by salmonella-paratyphi-B and salmonella-java—comparison of anaerobic plate test, lead acetate test and turbidity test. J Hyg Camb 95:107–114CrossRefGoogle Scholar
  34. 34.
    Malorny B, Bunge C, Helmuth R (2003) Discrimination of d-tartrate-fermenting and—nonfermenting salmonella enterica subsp. enterica isolates by genotypic and phenotypic methods. J Clin Microbiol 41:4292–4297CrossRefGoogle Scholar
  35. 35.
    Phillippi C-M, Mazdiyasni K-S-S (2006) Infrared and Raman spectra of zirconia polymorphs. J Amer Ceram Soc 54:254–258CrossRefGoogle Scholar
  36. 36.
    Cai J, Raptis C, Raptis Y-S, Anastassakis E (1995) Temperature dependence of Raman scattering in stabilized cubic zirconia. Phys Rev B 51:201–209CrossRefGoogle Scholar
  37. 37.
    Morrel G, Katiyar R-S, Torres D, Paje S-E, Liopis J (1997) Raman scattering study of thermally reduced stabilized cubic zirconia. J Appl Phys 81:2830–2834CrossRefGoogle Scholar
  38. 38.
    Mehrotra S, Bandyophyay A-K (2007) Band structure calculation and high-pressure transition in praseodymium oxide. J Alloys Comp 436:56–60CrossRefGoogle Scholar
  39. 39.
    Pecharromán C, Ocaña M, Serna C-J (1996) Optical constants of tetragonal and cubic zirconias in the infrared. J Appl Phys 80:3479–3483CrossRefGoogle Scholar
  40. 40.
    Fernandez E, Sanchez E-V, Panizza M, Carnasciali M–M, Busca G (2001) Vibrational and electronic spectroscopic properties of zirconia powders. J Mater Chem 11:1891–1897CrossRefGoogle Scholar
  41. 41.
    Naumenko A-P, Berezovska N-I, Biliy M–M, Shevchenko O-V (2008) Vibrational analysis and Raman spectra of tetragonal zirconia. Phys Chem Solid State 9:121–125Google Scholar
  42. 42.
    Gazzoli D, Mattei G, Valigi M (2007) Raman and X-ray investigations of incorporation of Ca2+ and Cd2+ in the ZrO2 structure. J Raman Spectros 38:824–831CrossRefGoogle Scholar
  43. 43.
    Domenech A, Montoya N, Alarcón J (2012) Electrochemical characterization of praseodymium centers in Pr(x)Zr1−xO−2 zirconias using electrocatalysis and photoelectrocatalysis. J Solid State Electrochem 16:963–975CrossRefGoogle Scholar
  44. 44.
    Shi Y, Wu P, Du P, Cai C (2006) Solid-state electrochemistry of gadolinium hexacyanoferrate modified electrode and electrocatalytic properties of gadolinium hexacyanoferrate. Acta Phys Chim Sin 22:1227–1233CrossRefGoogle Scholar
  45. 45.
    Stiz A, Buchberger W (1994) Studies on electrochemical reactions at metal-oxide electrodes for combination with high-performance liquid chromatography. Electroanalysis 6:251–258CrossRefGoogle Scholar
  46. 46.
    Santos L-M, Baldwin R-P (1987) Liquid-chromatography electrochemical detection of carbohydrates at a cobalt phthalocyanine containing chemically modified electrode. Anal Chem 59:1766–1770CrossRefGoogle Scholar
  47. 47.
    Ben Aoun S, Dursun Z, Koga T, Bang G-S, Sotomura T, Taniguchi I (2003) Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions. Electrochem Commun 5:317–320CrossRefGoogle Scholar
  48. 48.
    Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2005) Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem Commun 7:189–193CrossRefGoogle Scholar
  49. 49.
    Tominaga M, Shimazoe T, Nagashima M, Kusuda H, Kubo A, Kuwahara Y, Taniguchi I (2006) Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution. J Electroanal Chem 590:37–46CrossRefGoogle Scholar
  50. 50.
    Teufer G (1962) Crystal structure of tetragonal ZrO2. Acta Crystallogr 15:1187CrossRefGoogle Scholar
  51. 51.
    Smith D-K, Newkirk H-W (1965) Crystal structure of baddeleyite (monoclinic ZrO2) and its relation to polymorphism of ZrO2. Acta Crystallogr 18:983–991CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Noemí Montoya
    • 1
  • Pablo Pardo
    • 1
  • Antonio Doménech-Carbó
    • 2
  • Javier Alarcón
    • 1
  1. 1.Department of Inorganic ChemistryUniversity of ValenciaBurjasotSpain
  2. 2.Department of Analytical ChemistryBurjasotSpain

Personalised recommendations