Advertisement

Journal of Sol-Gel Science and Technology

, Volume 69, Issue 1, pp 67–71 | Cite as

A facile synthetic pathway of monodisperse Fe3O4 nanocrystals

  • Hongzhang Qi
  • Biao Yan
  • Wei Lu
Original Paper

Abstract

A facile approach was used for synthesize size-controlled monodisperse magnetite (Fe3O4) nanoparticles. In this method, precursors were obtained only using iron (III) chloride though a simple non-alkoxide sol–gel method. Meanwhile, this operation is without the need for inert gas atmosphere and refluxing conditions and without the strict control of high temperature and pressure. The phase structures, morphologies, particle sizes and magnetic properties of Fe3O4 nanoparticles were characterized by X-ray diffraction, transmission electron diffraction, fourier-transform infrared spectroscopy, near-edge X-ray absorption fine structure and vibrating sample magnetometer. Although this approach is a small modification to other methods, the synthetic pathway includes the advantages of several other methods. In addition, this method may offer a feasible strategy for those reaction which need more moderate reaction conditions.

Keywords

Nanoparticles Monodisperse Magnetic materials Synthetic method 

Notes

Acknowledgments

The current investigations were financially supported by the Chinese National Science Foundation (Grant 50901052 and Grant 51071109),Projects of Shanghai Science and Technology Committee (10dz2211300), and Program for young Excellent Talents in Tongji University (2009KJ003). We thank the SSRF for the structure and chemical state measurements.

References

  1. 1.
    Tian Y, Yu B, Li X et al (2011) Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J Mater Chem 21:2476–2481CrossRefGoogle Scholar
  2. 2.
    Deng YH, Qi DW, Deng CH et al (2007) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Soc 130:28–29CrossRefGoogle Scholar
  3. 3.
    Deng H, Li XL, Peng Q et al (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785CrossRefGoogle Scholar
  4. 4.
    Park J, An J, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mat 3:891–895CrossRefGoogle Scholar
  5. 5.
    Ge JP, Hu YG, Biasini M et al (2007) Superparamagnetic magnetite colloidal nanocrystal clusters. Science 46:4342–4345Google Scholar
  6. 6.
    Tsuzuki T, Schäffel T, Muroi M et al (2011) α-Fe2O3 Nano-platelets prepared by mechanochemical/thermal processing. Powder Technol 210:198–202CrossRefGoogle Scholar
  7. 7.
    Zhou ZH, Wang J, Liu X et al (2001) Synthesis of Fe3O4 nanoparticles from emulsions. J Mater Chem 11:1704–1709CrossRefGoogle Scholar
  8. 8.
    Lin CR, Chu YM, Wang SC (2006) Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater Lett 60:447–450CrossRefGoogle Scholar
  9. 9.
    Fan R, Chen XH, Gui Z et al (2001) A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Mater Res Bull 36:497–502CrossRefGoogle Scholar
  10. 10.
    Balasubramaniam C, Khollam YB, Banerjee I et al (2004) DC thermal arc-plasma preparation of nanometric and stoichiometric spherical magnetite(Fe3O4) powders. Mater Lett 58:3958–3962CrossRefGoogle Scholar
  11. 11.
    Gash AE, Satcher JH, Simpson RL et al (2003) Use of epoxides in the Sol-Gel synthesis of porous iron(III) Oxide monoliths from Fe(III) salts. Chem Mater 15:3268CrossRefGoogle Scholar
  12. 12.
    Long JW, Logan MS, Carpenter EE et al (2004) Synthesis and characterization of Mn–FeOx aerogels with magnetic properties. J Non-Cryst Solids 350:182–188CrossRefGoogle Scholar
  13. 13.
    Qi HZ, Yan B, Lu W et al (2011) A Non-Alkoxide Sol-Gel Method for the Preparation of Magnetite (Fe3O4) Nanoparticles. Curr Nanosci 7:381–388CrossRefGoogle Scholar
  14. 14.
    Sun SH, Zeng H, Robinson DB et al (2004) Monodisperse MFe2O4 (M = Fe Co., Mn) Nanoparticles. J Am Chem Soc 126:273–279CrossRefGoogle Scholar
  15. 15.
    Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596CrossRefGoogle Scholar
  16. 16.
    Hyeon T, Lee SS, Park J et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801CrossRefGoogle Scholar
  17. 17.
    Qi HZ, Lu W, Li CK et al (2011) Synthesis and characterization of water-soluble magnetite nanocrystals via one-step sol-gel pathway. Sci China, Ser G 54:1239–1245CrossRefGoogle Scholar
  18. 18.
    Li Z, Chen H, Bao H et al (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393CrossRefGoogle Scholar
  19. 19.
    Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. a new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400CrossRefGoogle Scholar
  20. 20.
    Klug HP, Alexander LE (1962) X-ray diffraction procedures for polycrystalline and amorphous materials. New York, Wiley, pp 491–538Google Scholar
  21. 21.
    Lopez-Quintela MA, Rivas J (1993) Chemical reaction in microemulsions: a powerful method to obtain ultra fine particles. J Colloid Inter Face Sci 158:446–451CrossRefGoogle Scholar
  22. 22.
    Lee Y, Lee J, Bae CJ et al (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509CrossRefGoogle Scholar
  23. 23.
    Li Z, Sun Q, Gao M (2005) Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Int Ed 44:123CrossRefGoogle Scholar
  24. 24.
    Aslam M, Schultz EA, Sun T et al (2007) Synthesis of amine-stabilized aqueous colloidal iron oxide nanoparticles. Cryst Growth Des 7:471–475CrossRefGoogle Scholar
  25. 25.
    Marcos RM, Heloise RB, Marcos RG et al (2013) Synthesis of highly hydrophilic magnetic nanoparticles of Fe3O4 for potential use in biologic systems. Colloid Surface A 417:224–229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of D&A for Metal-Functional MaterialsTongji UniversityShanghaiChina
  3. 3.Venture Business LaboratoryAkita UniversityAkitaJapan

Personalised recommendations