Journal of Sol-Gel Science and Technology

, Volume 68, Issue 2, pp 294–301 | Cite as

Synthesis of novel Schiff base doped sol–gel silicas

  • Shazia Naheed
  • Farzana Mehmood
  • Hafiz Badaruddin Ahmad
  • Waheed Ahmad
  • Ghulam Zakria
Original Paper


Sulfonamide Schiff bases were doped uniformly in silica sol–gels prepared from liquid precursors by a fast and easy way at room temperature and processed to form xerogels. Schiff bases are efficient chelating agents, bioactive and catalytically active compounds. The structures of the newly synthesized Schiff base doped xerogels were elucidated by their physical (morphology, surface area, porosity), spectral (FTIR) and analytical (CHNSO/Si) data. The powder X-ray diffraction studies were carried out to confirm the formation of single phase. Characterization confirmed that Schiff base molecules are entrapped inside the pores as well as physically bound onto the silica surface. All Schiff base doped xerogels are stable mesoporous materials showing hydrophilic properties. Loadings of Schiff bases from 0.10 to 0.23 g/g of xerogel were obtained resulting amorphous materials. The doping of Schiff bases with xerogel caused change in surface area, pore volume and pore diameter of xerogel without damaging the main framework of siliceous skeleton. Morphology and colour of xerogel was also changed after doping. The entrapment of Schiff bases in xerogel caused increase in their decomposition temperatures. The final Schiff base doped xerogels show remarkable thermal stability.


Sulfonamide Schiff bases Sol–gel method Blank xerogel Schiff base doped xerogels 



We are grateful for the financial support provided by the Higher Education Commission of Pakistan and lab facilities provided by Green Chemistry, University of York UK and Centralized Resource Laboratory, University of Peshawar.


  1. 1.
    Baluja S, Solanki A, Kachhadia N (2006) J Iranian Chem Soc 3:312CrossRefGoogle Scholar
  2. 2.
    Chohan ZH, Shad HA (2009) J Enzy Inhib Med Chem 23:369CrossRefGoogle Scholar
  3. 3.
    Chohan ZH, Supuran CT (2008) J Enzy Inhib Med Chem 23:240CrossRefGoogle Scholar
  4. 4.
    Chohan ZH, Shaikh AU, Naseer MM, Supuran CT (2006) J Enzy Inhib Med Chem 21:771CrossRefGoogle Scholar
  5. 5.
    EI-Baradie KY (2005) J Monatshefte fur Chemie 136:1139CrossRefGoogle Scholar
  6. 6.
    Soomro R, Ahmed MJ, Memon N, Khan H (2008) Anal Chem Insights 3:75–90Google Scholar
  7. 7.
    Ahmed MJ, Nasiruddin M (2007) Chemosphere 67:2020–2027CrossRefGoogle Scholar
  8. 8.
    Dadfarnia S, Ashknani H, Shabani AMH, Tamaddon F (2009) Can J Anal Sci Spectros 54:83–92Google Scholar
  9. 9.
    Benabdallah T, Al-Taiar AH, Reffas H (2004) South Afr J Chem 57:33–36Google Scholar
  10. 10.
    Youcef MH, Barkat D, Benabdallah T (2006) J Saudi Chem Soc 10:15–20Google Scholar
  11. 11.
    Chohan ZH, Youssoufi MH, Jarrahpour A, Hadda TB (2009) Euro J Med Chem 34:1–11Google Scholar
  12. 12.
    Gibson LT, Kerr WJ, Nordon A, Reglinski J, Robertson C, Turnbull L, Watt CM, Cheung A, Johnstone W (2008) Anal Chim Acta 623:109–116CrossRefGoogle Scholar
  13. 13.
    Krishnapillai GK, Konnully SJ (2007) Environ Chem Lett 5:19–21CrossRefGoogle Scholar
  14. 14.
    Krishnapillai GK, Konnully SJ, Remalakshmi P (2005) J Appl Polym Sci 98:1536–1539CrossRefGoogle Scholar
  15. 15.
    Samal S, Acharya S, Dey RK, Ray AR (2003) J Appl Polym Sci 88:570–581CrossRefGoogle Scholar
  16. 16.
    Amarasekara AS, Owereh OS, Aghara SK (2009) J Sol–Gel. Sci Technol 52:382–387Google Scholar
  17. 17.
    Shabani AMH, Dadfarnia S, Jafari AA, Shahbasi Z (2006) Can J Anal Sci Spectros 51:194–199Google Scholar
  18. 18.
    Shabany M, Shabani AMH, Dadfarnia S, Gorji A, Ahmadi SH (2008) Ecl Quim. São Paulo 33:61–66Google Scholar
  19. 19.
    Cory JG, Cory AH (eds) (1989) International encylopedia of pharmacology and therapeutics, Pergamon, New YorkGoogle Scholar
  20. 20.
    Phatak P, Jolly VS, Sharma KP (2000) Orient J Chem 16:493Google Scholar
  21. 21.
    Baseer MA, Jasdhav VD, Phule RM, Archana YV, Vibhute YB (2000) Orient J Chem 16:553Google Scholar
  22. 22.
    Sridhar SK, Pandeya SN, De Clercq E (2001) Boll Chim Farm 140:302Google Scholar
  23. 23.
    Singh WM, Dash BC (1998) Pesticides 22:33Google Scholar
  24. 24.
    Guofa L, Tongshum S, Younghian Z (1997) J Mol Struct 412:75CrossRefGoogle Scholar
  25. 25.
    Das BP, Choudhury RT, Das KG, Choudhury DN, Choudhury B (1994) Chem Environ Res 3:19Google Scholar
  26. 26.
    Sparatore F, Pirisino G, Alamanni MC, Maca-Dimich P, Satta M (1978) Boll Chim Farm 117:638Google Scholar
  27. 27.
    Shiff H (1864) Ann Chem Pharm Suppl 3:343Google Scholar
  28. 28.
    Chaviara AT, Christidis PC, Papageorgiou A, Chrysogelou E, Hadjipavlou-Litina DJ, Bolos CA (2005) J Inorg Biochem 99:2102–2109CrossRefGoogle Scholar
  29. 29.
    Llobet A, Martell AE, Martinez MA (1998) J Mol Catal 129:19–26CrossRefGoogle Scholar
  30. 30.
    Katsuki T (2004) Chem Soc Rev 33:437–444CrossRefGoogle Scholar
  31. 31.
    Chisem JC, Rafelt J, Chisem J, Clark JH, Macquarrie DJ, Shieh MT, Jachuck R, Ramshaw C, Scott K (1998) Chem Commun 1949–1950Google Scholar
  32. 32.
    Lozan V, Lassahn PG, Zhang C, Wu B, Janiak C, Rheinwald G, Lang H (2003) Z Naturforsch 58B:1152–1164Google Scholar
  33. 33.
    Paul S, Clark JH (2004) J Mol Catal 215A:107–111CrossRefGoogle Scholar
  34. 34.
    Macquarrie DJ, Gilbert BC, Gilbey LJ, Caragheorgheopol A, Savonea F, Jackson DB, Onida B, Garrone E, Luque R (2005) J Mater Chem 15:3946–3951CrossRefGoogle Scholar
  35. 35.
    Soliman EM, Mohmoud ME, Ahmed SA (2001) Talanta 54:243CrossRefGoogle Scholar
  36. 36.
    Wang JQ, Huang L, Xue M, Wang Y (2008) J Phys Chem 112C:5015–5022Google Scholar
  37. 37.
    Wang S, Men G, Wang Y, Zhao L, Hou Q (2011) Jiang S 11:137Google Scholar
  38. 38.
    Gao L, Wang Y, Wang J, Huang L, Shi L, Fan X, Zou Z, Yu T, Zhu M, Li Z (2006) Inorg Chem 45:6844–6850CrossRefGoogle Scholar
  39. 39.
    Zhao L, Wang S, Wu Y, Hou Q, Wang Y, Jiang S (2007) J Phys Chem 111C:18387–18391Google Scholar
  40. 40.
    Li Y, Yan B (2009) Solid State Sci 11:994–1000CrossRefGoogle Scholar
  41. 41.
    Liu JL, Xu S, Yan B (2011) Colloid Surface 373A:116–123Google Scholar
  42. 42.
    Li Y, Yan B, Liu JL (2010) Nanoscale Res Lett 5:797–804CrossRefGoogle Scholar
  43. 43.
    Wei Y, Gang LY, Yu WT, Hua LM, Shuang LZ (2008) Acta Phys Chim Sin 24:1535–1539CrossRefGoogle Scholar
  44. 44.
    Chohan ZH, Sheikh AU, Naseer MM, Supuran CT (2006) J Enzyme Inhib Med Chem 21:771CrossRefGoogle Scholar
  45. 45.
    Scozzafava A, Banciu MD, Popescu A, Supuran CT (2000) J Enzyme Inhib Med Chem 15:533–546CrossRefGoogle Scholar
  46. 46.
    Maurya RC, Patel P (1999) Spectrosc Lett 32:213–236CrossRefGoogle Scholar
  47. 47.
    Shvaikovska NV, Melnyk IV, Yurchenko GR, Matkovski OK, Zub YL (2004) Chem Phys Technol Surf 10:80–84Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shazia Naheed
    • 1
  • Farzana Mehmood
    • 1
  • Hafiz Badaruddin Ahmad
    • 1
  • Waheed Ahmad
    • 2
  • Ghulam Zakria
    • 3
  1. 1.Institute of Chemical SciencesBahauddin Zakariya UniversityMultanPakistan
  2. 2.Institute of Advanced MaterialsBahauddin Zakariya UniversityMultanPakistan
  3. 3.Advanced Engineering Research OrganizationWah CanttPakistan

Personalised recommendations