Journal of Sol-Gel Science and Technology

, Volume 67, Issue 3, pp 519–526 | Cite as

Preparation of nodular carbon cryogel from simple and inexpensive polycondensation reaction of commercial modified black wattle tannin

  • Liana Alvares Rodrigues
  • Julien Parmentier
  • José Bernardo Parra
  • Gilmar Patrocínio Thim
Original Paper


Tannin–formaldehyde cryogels (TFC) were synthesized by sol–gel polycondensation of low molecular weight and highly reactive modified tannin with formaldehyde using HCl as a catalyst. Carbon cryogels (CC) were obtained by the TFC pyrolysis at an inert atmosphere at 800 °C. Pyrolysis caused significant changes in the physical and chemical properties of the material. The pyrolysis induced the decomposition of acid superficial groups and the development of basic ones. Pyrolysis also provoked significant change in the pore volume, forming a great amount of micropores. TFC and CC showed amorphous and turbostratic structures, respectively. Unpurified samples had inorganic impurities in their compositions.


Tannin Porosity Pyrolysis Carbon cryogel Adsorption 



The authors gratefully acknowledge CAPES for financial support.


  1. 1.
    Long D, Zhang J, Yang J, Hu Z, Li T, Cheng G et al (2008) Preparation and microstructure control of carbon aerogels produced using m-cresol mediated sol–gel polymerization of phenol and furfural. N Carbon Mater 23:165–170CrossRefGoogle Scholar
  2. 2.
    Mirzaeian M, Hall PJ (2009) The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci 44:2705–2713CrossRefGoogle Scholar
  3. 3.
    Long D, Liu X, Qiao W, Zhang R, Zhan L, Ling L (2009) Molecular design of polymer precursors for controlling microstructure of organic and carbon aerogels. J Non-Cryst Solids 355:1252–1258CrossRefGoogle Scholar
  4. 4.
    Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors. Carbon 38:1099–1105CrossRefGoogle Scholar
  5. 5.
    Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2007) Control of mesoporous properties of carbon cryogels prepared from wattle tannin and furfural. J Porous Mater 15:695–703CrossRefGoogle Scholar
  6. 6.
    Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Masson E, Celzard A (2011) The use of tannin to prepare carbon gels. Part I: Carbon aerogels. Carbon 49:2773–2784CrossRefGoogle Scholar
  7. 7.
    Schlienger S, Graff A-L, Celzard A, Parmentier J (2012) Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor. Green Chem 14:313CrossRefGoogle Scholar
  8. 8.
    Huang X, Wang Y, Liao X, Shi B (2010) Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica. J Hazard Mater 183:793–798CrossRefGoogle Scholar
  9. 9.
    Lee W, Lan W (2006) Properties of resorcinol–tannin–formaldehyde copolymer resins prepared from the bark extracts of Taiwan acacia and China fir. Bioresour Technol 97:257–264CrossRefGoogle Scholar
  10. 10.
    He F, Pan Q-H, Shi Y, Duan C-Q (2008) Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules 13:2674–2703CrossRefGoogle Scholar
  11. 11.
    Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2007) Preparation of carbon cryogels from wattle tannin and furfural. Microporous Mesoporous Mater 98:258–266CrossRefGoogle Scholar
  12. 12.
    Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2008) Improvement of mesoporosity of carbon cryogels by acid treatment of hydrogels. Microporous Mesoporous Mater 115:432–439CrossRefGoogle Scholar
  13. 13.
    Amaral-Labat G, Szczurek A, Fierro V, Stein N, Boulanger C, Pizzi A et al (2012) Pore structure and electrochemical performances of tannin-based carbon cryogels. Biomass Bioenergy 39:274–282CrossRefGoogle Scholar
  14. 14.
    Pasch H, Pizzi A, Rode K (2001) MALDI–TOF mass spectrometry of polyflavonoid tannins. Polymer 42:7531–7539CrossRefGoogle Scholar
  15. 15.
    Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Celzard A (2011) The use of tannin to prepare carbon gels. Part II. Carbon cryogels. Carbon 49:2785–2794CrossRefGoogle Scholar
  16. 16.
    Chao Y-J, Yuan X, Ma Z-F (2008) Preparation and characterization of carbon cryogel (CC) and CC–SiO composite as anode material for lithium-ion battery. Electrochim Acta 53:3468–3473CrossRefGoogle Scholar
  17. 17.
    Sepehri S, García BB, Cao G (2009) Influence of surface chemistry on dehydrogenation in carbon cryogel ammonia borane nanocomposites. Eur J Inorg Chem 5:599–603CrossRefGoogle Scholar
  18. 18.
    Silva AMT, Machado BF, Figueiredo JL, Faria JL (2009) Controlling the surface chemistry of carbon xerogels using HNO3-hydrothermal oxidation. Carbon 47(7):1670–1679CrossRefGoogle Scholar
  19. 19.
    Job N, Thery A, Pirard R, Marien J, Kocon L, Rouzaud J et al (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494CrossRefGoogle Scholar
  20. 20.
    Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15:101–114CrossRefGoogle Scholar
  21. 21.
    Yamamoto T, Endo A, Ohmori T, Nakaiwa M, Mukai SR, Tamon H (2005) Effect of drying method on gas adsorption characteristics of carbon gel microspheres. Dry Technol 23:2119–2129CrossRefGoogle Scholar
  22. 22.
    Chaichanawong J, Yamamoto T, Kim S-I, Ohmori T (2009) Preparation and characterization of nickel-modified carbon cryogel beads with uniform particle size. J Non-Cryst Solids 355:1605–1612CrossRefGoogle Scholar
  23. 23.
    Kamachi M, Cheng XS, Kida T, Kajiwara A, Shibasaka M, Nagata S (1987) Synthesis of new polymers containing porphyrins in their side chains: radical polymerizations of 5-[4-(acryloyloxy)phenyl]-10,15,20-triphenylporphyrin and 5-[4-(methacryloyloxy)phenyl]-10,15,20-triphenylporphyrin. Macromolecules 20:2665–2669CrossRefGoogle Scholar
  24. 24.
    Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol–Gel Sci Technol 52:56–64CrossRefGoogle Scholar
  25. 25.
    Rojas-Cervantes ML, Alonso L, Díaz-Terán J, López-Peinado AJ, Martín-Aranda RM, Gómez-Serrano V (2004) Basic metal–carbons catalysts prepared by sol–gel method. Carbon 42:1575–1582CrossRefGoogle Scholar
  26. 26.
    Thipkhunthod P, Meeyoo V, Rangsunvigit P, Rirksomboon T (2007) Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. J Anal Appl Pyrolysis 79:78–85CrossRefGoogle Scholar
  27. 27.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  28. 28.
    Sze MFF, McKay G (2010) An adsorption diffusion model for removal of para-chlorophenol by activated carbon derived from bituminous coal. Environ Pollut 158:1669–1674CrossRefGoogle Scholar
  29. 29.
    Tzeng S-S, Hung K-H, Ko T-H (2006) Growth of carbon nanofibers on activated carbon fiber fabrics. Carbon 44:859–865CrossRefGoogle Scholar
  30. 30.
    Li D, Wang H, Wang X (2007) Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization. J Mater Sci 42:4642–4649CrossRefGoogle Scholar
  31. 31.
    Sonibare OO, Haeger T, Foley SF (2010) Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 35:5347–5353CrossRefGoogle Scholar
  32. 32.
    Barbosa CML, Sansiviero MTC (2005) Decomposição térmica de complexos de Zn e Cd com isomaleonitriladitiolato (imnt). Quim Nova 28:761–765CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Liana Alvares Rodrigues
    • 1
  • Julien Parmentier
    • 2
  • José Bernardo Parra
    • 3
  • Gilmar Patrocínio Thim
    • 1
  1. 1.Instituto Tecnológico de Aeronáutica-ITA/CTASão José dos CamposBrazil
  2. 2.Institut de Science des Matériaux de Mulhouse, LRC CNRS 7228MulhouseFrance
  3. 3.Energy and Environment DepartmentInstituto Nacional del Carbón, CSICOviedoSpain

Personalised recommendations