Journal of Sol-Gel Science and Technology

, Volume 67, Issue 2, pp 339–343 | Cite as

Fabrication of sol–gel derived ZrO2 thin film for HR coatings via rapid thermal annealing process

Original Paper


The properties of sol–gel derived ZrO2 thin films heated via a novel method of rapid thermal annealing process were studied. We investigated the effects of heat-treatment schedules with different ramp rates on the refractive index and thickness of ZrO2 thin films as well. By controlling the heating treatment parameter, the refractive index of the ZrO2 coatings can be adjusted from 1.69 up to 1.9 continuously, which can meet different requirement for high reflectance well. The thickness of crack-free ZrO2 coatings can be easily controlled by employing different experimental parameters. The result of X-ray diffraction shows that as-deposited film is amorphous, and it remains stable up to the heating temperature of 400 °C. However, it begins to crystallize as the temperature increases further attaining 500 °C. Meanwhile, the surface morphology was evaluated by atomic force microscopy and the result shows that the surface of the ZrO2 coating is smooth and uniform with root means square of 0.63 nm for the measured area of 5 × 5 μm. As a typical example, ZrO2 thin films with refractive index of 1.9 are chosen for highly reflective coatings. Nearly full reflective mirror at 1,064 nm was fabricated on fused silica substrate. The laser induced damage thresholds of 22 J/cm2 (1,064 nm, 10 ns) and 14.6 J/cm2 (1,064 nm, 10 ns) are obtained for ZrO2 coating and ZrO2/SiO2 multilayer coatings respectively.


RTA process Sol–gel method ZrO2 thin film HR coatings 



This subject is supported by Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (No. ammt2012A-11).


  1. 1.
    Belleville PF, Bonnin C, Priotton JJ (2000) J Sol–Gel Sci Technol 19(1–3):223–226CrossRefGoogle Scholar
  2. 2.
    Oliver JB, Kupinski P, Rigatti AL, Schmid AW, Lambropoulos JC, Papernov S, Kozlov A, Smith C, Hand RD (2012) Opt Express 20(15):16596–16610CrossRefGoogle Scholar
  3. 3.
    Zhang D, Wang C, Fan P, Cai X, Zheng Z, Shao J, Fan Z (2009) Opt Express 17(10):8246–8252CrossRefGoogle Scholar
  4. 4.
    Sprio S, Guicciardi S, Bellosi A, Pezzotti G (2006) Surf Coat Technol 4200(14–15):4579–4585CrossRefGoogle Scholar
  5. 5.
    Jeon TS, White JM, Kwong DL (2001) Appl Phys Lett 78(3):368–370CrossRefGoogle Scholar
  6. 6.
    Ferrer FJ, Frutos F, Garcia–Lopez J, Gonzalez–Elipe AR, Yubero F (2007) Thin Solid Films 516(2–4):481–485CrossRefGoogle Scholar
  7. 7.
    Shen J, Zhang Q, Wang J, Yang T, Deng Z, Zhou B, Chen L (2000) J Sol Gel Sci Technol 19(1–3):271–274CrossRefGoogle Scholar
  8. 8.
    Liang L, Yao X, Zhang L, Sheng Y, Dong W, Sun Y (2007) J Opt Soc Am B 24(5):1066–1074CrossRefGoogle Scholar
  9. 9.
    Li H, Xiong H, Tang Y (2010) Chin Opt Lett 8(2):241–243CrossRefGoogle Scholar
  10. 10.
    Shen J, Wang S-Z, Wang X-D, Liu Y, Li X-G (2009) Proc SPIE 7381:7381C1–7381C8Google Scholar
  11. 11.
    Wang X, Shen J (2012) J Sol Gel Sci Technol 61(1):206–212CrossRefGoogle Scholar
  12. 12.
    Floch HG, Belleville PF, Pegon PM, Dijonneau CS, Guerain JR (1996) Proc SPIE 2633:432–445CrossRefGoogle Scholar
  13. 13.
    Yang F, Shen J, Sun Q, Zhou B, Guangming W, Mugnier J (2006) Proc SPIE 6034:261–268Google Scholar
  14. 14.
    Thomas IM (1994) Proc SPIE 2288:50–55CrossRefGoogle Scholar
  15. 15.
    Jun S, Shengzhao W, Xiaodong W, Zhihua Z, Bin Z, Guangming W (2010) Rare Metal Mater Eng 39(Suppl 2):52–56Google Scholar
  16. 16.
    Liang L, Yao X, Zhang L, Dong W, Sun Y (2008) J Sol Gel Sci Technol 47(2):173–181CrossRefGoogle Scholar
  17. 17.
    Dieudonné X, Vallé K, Belleville P (2011) Opt Express 19(17):16356–16364CrossRefGoogle Scholar
  18. 18.
    Pascual R, Sayer M, Vasant Kumar CVR, Zou L (1991) J Appl Phys 70(4):2348–2352CrossRefGoogle Scholar
  19. 19.
    Bellessa J, Rabaste S, Plenet J-C, Mugnier J (2003) Proc SPIE 4944:15–22CrossRefGoogle Scholar
  20. 20.
    Kobayashi Y, Katayama M, Kato M, Kuramochi S (2013) J Am Ceram Soc Article first published online: 26 APR 2013Google Scholar
  21. 21.
    Olevsky EA, Kandukuri S, Froyen L (2007) J Appl Phys 102(11):114913CrossRefGoogle Scholar
  22. 22.
    Wang X, Shen J (2010) J Sol Gel Sci Technol 53(2):322–327CrossRefGoogle Scholar
  23. 23.
    Born M, Wolf E (2003) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th expanded Ed. United Kingdom at the University Press, Cambridge, p 92Google Scholar
  24. 24.
    Li X, Shen J (2011) J Sol Gel Sci Technol 59(3):539–545CrossRefGoogle Scholar
  25. 25.
    Rujkorakarn R, Sites JR (1986) J Vac Sci Technol 4(3):568–571CrossRefGoogle Scholar
  26. 26.
    Chin AK, Satyanarayan A, Zarrabi JH, Vetterling W (1988) J Appl Phys 64(3):994–999CrossRefGoogle Scholar
  27. 27.
    Gao Y, Masuda Y, Ohta H, Koumoto K (2004) Chem Mater 16(13):2615–2622CrossRefGoogle Scholar
  28. 28.
    Pascual R, Sayer M, Vasant Kumar CVR, Zou L (1991) J Appl Phys 70(4):2348–2352CrossRefGoogle Scholar
  29. 29.
    Scherer GW (1997) J Sol Gel Sci Technol 8(1–3):353–363Google Scholar
  30. 30.
    Du XM, Almeida RM (1995) J Mater Res 11(2):353–357CrossRefGoogle Scholar
  31. 31.
    Keddie JL, Giannelis EP (1991) J Am Ceram Soc 74(10):2669–2671CrossRefGoogle Scholar
  32. 32.
    Keddie JL, Braun PV, Giannelis EP (1994) J Am Ceram Soc 77(6):1592–1596CrossRefGoogle Scholar
  33. 33.
    Díaz–Parralejo A, Caruso R, Ortiza AL, Guiberteau F (2004) Thin Solid Films 458(1–2):92–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Electronic and Electrical EngineeringNanyang Institute of TechnologyNanyangChina
  2. 2.Shanghai Key Laboratory of Special Artificial Microstructure Materials and TechnologyTongji UniversityShanghaiChina

Personalised recommendations