Skip to main content
Log in

Sol–gel synthesis, crystal structure, electronic properties and magnetic studies of B2+xAsxCo4−3xO7 (0.0 ≤ x ≤ 0.75) composites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Synthesis of B2+xAsxCo4−3xO7 (S1–S4: x = 0.0, 0.25, 0.50 and 0.75) composite oxides were performed by sol–gel method. The powder X-ray diffraction pattern and Reitveld refinement results revels that the samples are formed monoclinic phase with Z = 2 and space group P21/m. Average crystallite size of the samples determined by Scherrer’s relation are found to be ~28–50 nm. The observed and calculated density values are determined and compared. Thermogram shows no phase transition in the range of 50–1,000 °C. The scanning electron micrographs show the morphology of the samples which are observed, the crystallites are rod like shape. The purity and the quantitative analysis were examined by the energy dispersive X-ray. The B–O and Co–O bonds of different sites show marginal variation in the samples, the circular valence charge density contour map of the Co and O in S1–S4 show partial covalent nature of Co–O. Based on the plane-wave density functional theory calculations on crystal structure for band structure and density of states of sample S1–S4 using CASTEP programme package show all the samples are conductor with no band gap. The magnetic moment plot in the range ±10 kG indicates the weak ferromagnetic behavior of the samples. The electron paramagnetic resonance line shapes of all four (S1–S4) samples are isotropic, Diffuse reflectance spectra of sample S1–S4 at room temperature show the band around 273 nm is ligand to metal (O2− → Co2+) charge transfer transition and d–d transition around 570 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aronne A, Turco M, Bagnasco G, Pernice P, Di Serio M, Clayden NJ, Marenna E, Fanelli E (2005) Chem Mater 17:2081–2090

    Article  CAS  Google Scholar 

  2. Gubin SP, Koksharov YuA, Khomutov GB, Yurkov GYu (2005) Russ Chem Rev 74:489–520

    Article  CAS  Google Scholar 

  3. Massard C, Taverdet JL, Brouillet S, Donnet C (2007) Surf Coat Technol 202:1067–1072

    Article  CAS  Google Scholar 

  4. Praveena K, Sadhana K, RamanaMurthy S (2011) J Magn Magn Mater 323:2122–2128

    Article  CAS  Google Scholar 

  5. McHenry ME, Laughhlin DE (2000) Acta Mater 48:223–238

    Article  CAS  Google Scholar 

  6. Keshmiria M, Troczynskia T, Mohsenib M (2006) J Hazard Mater 128:130–137

    Article  Google Scholar 

  7. Muggli DS, McCue JT, Falconer JL (1998) J Catal 173:470–483

    Article  CAS  Google Scholar 

  8. Nishimoto BSI, Ohtani B, Kajiwara H, Kagiya T (1985) J Chem Soc Faraday Trans 1(81):61–68

    Google Scholar 

  9. Walker SA, Christensen PA, Shaw KE, Walker GM (1995) J Electroanal Chem 393:137–140

    Article  Google Scholar 

  10. Zayat Marcos, Levy David (2000) Chem Mater 12:2763–2769

    Article  CAS  Google Scholar 

  11. Gill SK, Shobe AM, Hope-weeks LJ (2009) Scanning 31:132–138

    Article  CAS  Google Scholar 

  12. Xu J, Zhao Y, Kuang Q (2011) J Sol–Gel Sci Technol 58:1–4

    Article  Google Scholar 

  13. Rietveld HM (1969) J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  14. Garbout A, Bouattour S, Botelho do Rego AM, Ferraria A, Kolsia AW (2007) J Cryst Growth 304:374–378

    Article  CAS  Google Scholar 

  15. Das BB, Ambika R (2010) Indian J Chem Sect A 49:425–430

    Google Scholar 

  16. Carvajal JR, Hennion M, Moussa F, Moudden AH (1998) Phys Rev B 57:R3189–R3192

    Article  Google Scholar 

  17. Pakokthom C, Rujijanagul G, Tunkasiri T (1999) J Mater Sci Lett 18:747–749

    Article  CAS  Google Scholar 

  18. Chen DG, Cheng WD, Wu DS, Zhang H, Zhang YC, Gong YJ, Kan ZG (2004) J Solid State Chem 177:3927–3933

    Article  CAS  Google Scholar 

  19. Hamann DR, Schluter M, Chiang C (1979) Phys Rev Lett 43:1494–1497

    Article  CAS  Google Scholar 

  20. Segall MD, Lindan PLD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Mater 14:2717–2745

    Article  CAS  Google Scholar 

  21. McMillan AS, Broadbelt JL, Snurr QR (2002) J Phys Chem B 106:10864–10872

    Article  CAS  Google Scholar 

  22. Oleinik II, Tsymbal EY, Pettifor DG (2000) Phys Rev B 16:1–9

    Google Scholar 

  23. Jauch W, Reehuis M (2002) Phys Rev B 65:125111–125118

    Article  Google Scholar 

  24. Wang L, Wang Y, Wang D, Zhang J (2008) Solid State Commun 148:331–335

    Article  CAS  Google Scholar 

  25. Ensling D, Thissen A, Laubach S, Schmidt PC, Jaegermann W (2010) Phys Rev B 82:195431-16

    Article  Google Scholar 

  26. Jiang XM, Xu ZN, Zhao ZY, Guo SP, Guo GC, Huang JS (2011) Eur J Inorg Chem 26:4069–4076

    Article  Google Scholar 

  27. Brahma P, Anit K, Giri Chakravorty D (1992) J Magn Magn Mater North-Holland 117:163–168

    Article  CAS  Google Scholar 

  28. Kumar L, Kar M (2011) J Magn Magn Mater 323:2042–2048

    Article  CAS  Google Scholar 

  29. Bai Y, Zhou J, Gui Z, Yue Z, Li L (2003) Mate Sci Eng B 99:266–269

    Article  Google Scholar 

  30. Duan XL, Yuan DR, Wanga LH, Yu FP, Cheng XF, Liu ZQ, Yan SS (2006) J Cryst Growth 296:234–238

    Article  CAS  Google Scholar 

  31. Carta G, Casarin M, El Habra N, Natali M, Rossetto G, Sada C, Tondello E, Zanella P (2005) Electrochim Acta 50:4592–4599

    Article  CAS  Google Scholar 

  32. Rangappa D, Ohara S, Naka T, Kondo A, Ishiib M, Adschiri T (2007) J Mater Chem 17:4426–4429

    Article  CAS  Google Scholar 

  33. Yang H, Zhang B, Wang X, Wang X, Li T, Xie S, Yao X (2005) J Cryst Growth 280:521–529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. M. Balakrishnarajan, for help with the Materials Studio software and Central Instrumentation Facility, Pondicherry University, Puducherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Palanisamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palanisamy, K., Das, B.B. Sol–gel synthesis, crystal structure, electronic properties and magnetic studies of B2+xAsxCo4−3xO7 (0.0 ≤ x ≤ 0.75) composites. J Sol-Gel Sci Technol 67, 321–330 (2013). https://doi.org/10.1007/s10971-013-3084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3084-8

Keywords

Navigation