Journal of Sol-Gel Science and Technology

, Volume 67, Issue 2, pp 256–266 | Cite as

Structural characterization of nano-crystalline Co3O4 ultra-fine fibers obtained by sol–gel electrospinning

  • Gibin George
  • S. Anandhan
Original Paper


In this paper, we report the obtention of ultrafine fibers of cobalt oxide (Co3O4) by combining electrospinning method with high-temperature calcinations from the precursor sol of poly(2-ethyl-2-oxazoline) (PEtOx)/cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] in water. The optimum electrospinning conditions for obtaining precursor composite nanofibers from PEtOx/Co(CH3COO)2·4H2O solution in water, to produce ceramic nanofibers, were studied. The average fiber diameter of the precursor composite fibers measured by scanning electron microscopy (SEM) was approximately 200 nm. Thermogravimetric analysis of PEtOx was performed to estimate the suitable calcination temperature of the precursor fibers. SEM images of the ceramic fibers obtained after calcination revealed the shrinkage in diameter due to complete degradation of the polymer and Co(CH3COO)2·4H2O. Fourier transform infrared spectroscopy was used to ensure the complete pyrolysis of polymer during calcinations of the composite fibers. Crystalline properties of the ceramic fibers were studied by X-ray diffraction and high resolution transmission electron microscopy. The ceramic fibers are polycrystalline with an average grain size of ≈40 nm obtained at a calcination temperature of 773 K. It was observed that the grain sizes increased as the calcination temperature was increased, due to self assembly mechanism.


Oxide ceramics Sol–gel process Electrospinning Calcination 



Gibin George would like to thank the department of metallurgical and materials engineering, National Institute of Technology of Karnataka (NITK), India for a research fellowship. The authors thank Ms. U. Rashmi and Mr. Prasanth Huilgol and Mr. T. Senthil for their valuable assistance in scanning electron microscopy, transmission electron microscopy and X-ray diffraction, respectively.


  1. 1.
    Abrishami ME, Kompany A, Hosseini SM, Bardar NG (2012) J Sol–Gel Sci Technol 62:153–159CrossRefGoogle Scholar
  2. 2.
    Zhao F, Li W, Luo H (2009) J Sol–Gel Sci Technol 49:247–252CrossRefGoogle Scholar
  3. 3.
    Nunes MGB, Cavalcante LS, Santos V, Sczancoski JC, Santos MRMC, Santos-Júnior LS, Longo E (2008) J Sol–Gel Sci Technol 47:38–43CrossRefGoogle Scholar
  4. 4.
    Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259–341CrossRefGoogle Scholar
  5. 5.
    Wold A, Dwight K (1993) Solid state chemistry: synthesis, structure, and properties of selected oxides and sulfides, 1st edn. Chapman & Hall, New YorkGoogle Scholar
  6. 6.
    Zhan S, Gong C, Chen D, Jiao X (2006) J Dispersion Sci Technol 27:931–933CrossRefGoogle Scholar
  7. 7.
    Du P, Song L, Xiong J, Li N, Xi Z, Wang L, Jin D, Guo S, Yuan Y (2012) Electrochim Acta 78:392–397CrossRefGoogle Scholar
  8. 8.
    Hwang D, Jo SM, Kim DY, Armel V, MacFarlane DR, Jang S-Y (2011) ACS Appl Mater Interfaces 3:1521–1527CrossRefGoogle Scholar
  9. 9.
    Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Polym Adv Technol 22:326–338CrossRefGoogle Scholar
  10. 10.
    Sinkó K, Szabó G, Zrínyi M (2011) Liquid-phase synthesis of cobalt oxide nanoparticles. J Nanosci Nanotechnol 11:4127–4135CrossRefGoogle Scholar
  11. 11.
    Yu T, Zhu YW, Xu XJ, Shen ZX, Chen P, Lim C-T, Thong JT-L, Sow C-H (2005) Adv Mater 17:1595–1599CrossRefGoogle Scholar
  12. 12.
    Liu C-Y, Chen C-F, Leu J-P (2009) Electrochem Solid-State Lett 12:J40–J43CrossRefGoogle Scholar
  13. 13.
    Kadam LD, Patil PS (2001) Sol Energy Mater Sol Cells 70:15–23CrossRefGoogle Scholar
  14. 14.
    Shim H-S, Shinde VR, Kim HJ, Sung Y-E, Kim WB (2008) Thin Solid Films 516:8573–8578CrossRefGoogle Scholar
  15. 15.
    Da Fonseca CNP, De Paoli M-A, Gorenstein A (1991) Adv Mater 3:553–555CrossRefGoogle Scholar
  16. 16.
    Barrera E, González I, Viveros T (1998) Sol Energy Mater Sol Cells 51:69–82CrossRefGoogle Scholar
  17. 17.
    Abdel Hamid Z, Abdel Aal A, Schmuki P (2008), Surf Interface Anal 40:1493–1499Google Scholar
  18. 18.
    Zhu J, Kailasam K, Fischer A, Thomas A (2011) ACS Catal 1:342–347CrossRefGoogle Scholar
  19. 19.
    Jiang SP, Tseung ACC (1990) J Electrochem Soc 137:3442–3446CrossRefGoogle Scholar
  20. 20.
    Feng Y, Zheng X (2012) ChemCatChem 4:1551–1554CrossRefGoogle Scholar
  21. 21.
    Jiao F, Frei H (2009) Angew Chem Int Ed 48:1841–1844CrossRefGoogle Scholar
  22. 22.
    Lu X, Huang X, Xie S, Zhai T, Wang C, Zhang P, Yu M, Li W, Liang C, Tong Y (2012) J Mater Chem 22:13357–13364CrossRefGoogle Scholar
  23. 23.
    Hu G, Tang C, Li C, Li H, Wang Y, Gong H (2011) J Electrochem Soc 158:A695–A699CrossRefGoogle Scholar
  24. 24.
    Yao W, Yang J, Wang J, Nuli Y (2008) J Electrochem Soc 155:A903–A908CrossRefGoogle Scholar
  25. 25.
    Compton OC, Abouimrane A, An Z, Palmeri MJ, Brinson LC, Amine K, Nguyen ST (2012) Small 8:1110–1116Google Scholar
  26. 26.
    Gu Y, Jian F, Wang X (2008) Thin Solid Films 517:652–655CrossRefGoogle Scholar
  27. 27.
    Mendoza L, Albin V, Cassir M, Galtayries A (2003) J Electroanal Chem 548:95–107CrossRefGoogle Scholar
  28. 28.
    Mishra SR, Dubenko I, Losby J, Ghosh K, Khan M, Ali N (2005) J Nanosci Nanotechnol 5:2076–2081CrossRefGoogle Scholar
  29. 29.
    Yang HT, Shen CM, Su YK, Yang TZ, Gao HJ, Wang YG (2003) Appl Phys Lett 82:4729–4731CrossRefGoogle Scholar
  30. 30.
    Kriegel C, Kit KM, McClements DJ, Weiss J (2009) Polymer 50:189–200CrossRefGoogle Scholar
  31. 31.
    Adams N, Schubert US (2007) Adv Drug Delivery Rev 59:1504–1520CrossRefGoogle Scholar
  32. 32.
    Choi S-W, Park JY, Kim SS (2011) Chem Eng J 172:550–556CrossRefGoogle Scholar
  33. 33.
    Gupta P, Elkins C, Long TE, Wilkes GL (2005) Polymer 46:4799–4810CrossRefGoogle Scholar
  34. 34.
    Wanjun T, Donghua C (2007) Chem Pap 61:329–332CrossRefGoogle Scholar
  35. 35.
    Senthil T, George G, Anandhan S (2013) Polym Plast Technol Eng 52:407–421CrossRefGoogle Scholar
  36. 36.
    Anandhan S, Ponprapakaran K, Senthil T, George G (2012) Int J Plast Technol 16:101–116CrossRefGoogle Scholar
  37. 37.
    Beachley V, Wen X (2009) Mater Sci Eng 29:663–668CrossRefGoogle Scholar
  38. 38.
    Chandrasekar R, Zhang L, Howe JY, Hedin NE, Zhang Y, Fong H (2009) J Mater Sci 44:1198–1205CrossRefGoogle Scholar
  39. 39.
    Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Li MS (2012) CrystEngComm 14:853–868CrossRefGoogle Scholar
  40. 40.
    Niranjanmurthi L, Park C, Lim KT (2012) Mol Cryst Liq. Cryst 564:206–212CrossRefGoogle Scholar
  41. 41.
    Tang C-W, Wang C-B, Chien S-H (2008) Thermochim Acta 473:68–73CrossRefGoogle Scholar
  42. 42.
    Choi S-W, Park JY, Kim SS (2011) Ceram Int 37:427–430CrossRefGoogle Scholar
  43. 43.
    Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. CRC Press, New YorkGoogle Scholar
  44. 44.
    Park JY, Kim SS (2009) J Am Ceram Soc 92:1691–1694CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology-KarnatakaMangaloreIndia

Personalised recommendations