Advertisement

Journal of Sol-Gel Science and Technology

, Volume 67, Issue 1, pp 170–174 | Cite as

Structure and magnetic properties of La0.67Sr0.33MnO3 thin films prepared by sol–gel method

  • Qing Ren
  • Yuanyuan Zhang
  • Ying Chen
  • Genshui Wang
  • Xianlin Dong
  • Xiaodong Tang
original paper

Abstract

La1−xSrxMnO3 (x = 0.33) (LSMO) thin films have been fabricated successfully by sol–gel method on two different types of substrates, Si (111) and SrTiO3 (STO) (001). Microstructure and magnetic properties of LSMO thin films have been investigated. The X-ray diffraction studies of the films confirm the pure phase of the LSMO thin films. In contrast with LSMO thin films on Si substrate, the performances of LSMO on STO substrate are superior both from structural and magnetic properties. For the samples deposited on STO substrate, highly preferred orientation as well as less strain and grain defects was found; in other aspect, the magnetization, the residual and saturation moment value, tended greater while a decreased coercive field required merely (saturation moment value was about five times and coercive field was only about 13 % of those on Si substrate). The Curie temperature of LSMO thin films on Si and STO substrates is estimated to be about 349.7 and 359 K, respectively.

Keywords

Sol–gel LSMO Crystal structure Magnetic properties 

Notes

Acknowledgments

This study was sponsored by State Key Basic Research Program of China (Grant No. 61176011), Changjiang Scholars and Innovative Research Team in University, National Basic Research Project (Grant No. 2013CB922301), Fundamental Research Funds for the Central Universities (ECNU), KLIFMD-2011-06 and PCSIRT.

References

  1. 1.
    Dabrowski B, Xiong X, Bukowski Z, Dybzinski R, Klamut PW, Siewenie JE, Chmaissem O, Shaffer J, Kimball CW, Jorgensen JD, Short S (1999) Phys Rev B 60:7006CrossRefGoogle Scholar
  2. 2.
    Hemberger J, Krimmel A, Kurz T, Krug von Nidda HA, Lvanov VY, Mukhin AA, Balbashov AM, Loidl A (2002) Phys Rev B 66:094410CrossRefGoogle Scholar
  3. 3.
    Tsui F, Smoak MC, Nath TK, Eom CB (2000) Appl Phys Lett 76:2421CrossRefGoogle Scholar
  4. 4.
    Eerenstein W, Wiora M, Prieto JL, Scott JF, Mathur ND (2007) Nature Mater 6:348CrossRefGoogle Scholar
  5. 5.
    Thiele C, Dorr K, Bilani O, Rodel J, Schultz L (2007) Phys Rev B 75:054408CrossRefGoogle Scholar
  6. 6.
    Yau JB, Hong X, Posadas A, Ahn CH, Gao W, Altman E, Bason Y, Klein L (2007) J Appl Phys 102:103901CrossRefGoogle Scholar
  7. 7.
    Liu D, Liu W (2012) Ceram Int 38:2579CrossRefGoogle Scholar
  8. 8.
    Liu ZL, Zhang J, Yao KL, Liu HR, Jia LH, Cheng HG (2007) J Sol-Gel Sci Technol 43:93CrossRefGoogle Scholar
  9. 9.
    Liu SM, Zhu XB, Yang J, Song WH, Dai JM, Sun YP (2006) Ceram Int 32:157CrossRefGoogle Scholar
  10. 10.
    Chen Y, Zhu JY, Zhang S, Dong XL, Lei XY, Tang XD, Wang GS, Jiang J (2011) J Am Ceram Soc 94:2783CrossRefGoogle Scholar
  11. 11.
    Wang ZJ, Usuki H, Kumagai T, Kokawa H (2007) J Sol-Gel Sci Technol 42:375CrossRefGoogle Scholar
  12. 12.
    Broussard PR, Browning VM, Cestone VC (1999) J Appl Phys 85:5414CrossRefGoogle Scholar
  13. 13.
    Shinde KP, Pawar SS, Pawar SH (2011) Appl Surf Sci 257:9996CrossRefGoogle Scholar
  14. 14.
    Majumdar S, Huhtinen H, Majumdar HS, Paturi P (2012) J Alloys Compd 512:332CrossRefGoogle Scholar
  15. 15.
    Suzuki Y, Hwang HY, Cheong SW, van Dover RB (1997) Appl Phys Lett 71:140CrossRefGoogle Scholar
  16. 16.
    Li TX, Zhang M, Yu FJ, Hu Z, Li KS, Yu DB, Yan H (2012) J Phys D Appl Phys 45:085002CrossRefGoogle Scholar
  17. 17.
    Bhosle V, Narayan J (2007) Appl Phys Lett 90:101903CrossRefGoogle Scholar
  18. 18.
    Pradhan AK, Pradhan AK, Hunter D, Williams T, Lasley-Hunter B, Bah R, Mustafa H, Rakhimov R, Zhang J, Sellmyer DJ, Carpenter EE, Sahu DR, Huang JL (2008) J Appl Phys 103:023914CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Inorganic Function Materials and Devices, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations