Journal of Sol-Gel Science and Technology

, Volume 67, Issue 1, pp 135–144 | Cite as

Straightforward synthesis of Ti-doped YSZ gels by chemical modification of the precursors alkoxides

Original Paper


Translucent, homogeneous, and monolithic gels of the [(ZrO2)0.92(Y2O3)0.08]1−x(TiO2)x system, where x = 0, 0.05, 0.08, and x = 0.10 (mol), have been reliably obtained, for the first time, by a sol–gel route from zirconium (IV) n-propoxide (Zr(OPrn)4), yttrium acetate hydrate and titanium (IV) isopropoxide (Ti(OPri)4). Chemical modification of both alkoxides, zirconium (IV) n-propoxide and titanium (IV) isopropoxide, by acetic acid allows us to change the hydrolysis and condensation behavior of them. Their modification implies the formation of chelating and bridging acetates avoiding the formation of precipitates. The line width and some shoulders in the FT-IR spectra of the solution, resulting of the mixture of the precursors and the catalysts, during the hydrolysis reaction suggest that both coordinations, chelating and bridging, should occur. Furthermore, the separation of the steps of hydrolysis and condensation allows to achieve conditions under which hydrolysis of the molecular precursor is slowed, whereas condensation is promoted under chemical reversibility to ensure a crystalline product at low calcination temperatures. In addition, the formation of metalloxane bondings (M–O–M’, M and M’ = Zr, Y, and Ti) has been confirmed by FT-IR throughout the sol–gel process. At about 630 °C, the crystallization of yttria stabilized zirconia (YSZ) for x = 0 or a titania-doped yttria stabilized zirconia solid solution (Ti-doped YSZ) for x = 0.05, 0.08, and 0.10 is detected by DTA-TG. By SEM-EDX and TEM-EDX the presence of Zr, Y, and Ti elements, in the adequate proportions according to the nominal compositions, has been proven in both dried and calcined gels.


Ti-doped YSZ Sol–gel Alkoxides Acetic acid FT-IR SOFCs 



This work has been supported by MINECO (Spanish Government) through the MAT2009-14369-C02-01 and MAT2012-31090 projects. I wish also to thank Dr. M.J. Velasco for her useful suggestions and to Mrs. C. Díaz-Dorado for the composition of micrographs and figures of this work.


  1. 1.
    Calès B, Baumard JF (1984) J Electrochem Soc 131:2407–2413CrossRefGoogle Scholar
  2. 2.
    Marques RMC, Frade JR, Marques FMB (1994) Solid State Ion 73(1–2):27–34CrossRefGoogle Scholar
  3. 3.
    Colomer MT, Traqueia LSM, Jurado JR, Marques FMB (1995) Mat Res Bull 30(4):515–522CrossRefGoogle Scholar
  4. 4.
    Colomer MT, Jurado JR (2002) J Solid State Chem 165:79–88CrossRefGoogle Scholar
  5. 5.
    Colomer MT, Jurado JR (1998) J Solid State Chem 141:282–289CrossRefGoogle Scholar
  6. 6.
    Colomer MT, Mirek M (2011) J Solid State Chem 184:365–372CrossRefGoogle Scholar
  7. 7.
    Schouler EJL (1983) Solid State Ion 9–10:945–951CrossRefGoogle Scholar
  8. 8.
    Zhang TS, Ma J, Chen YZ, Luo LH, Kong LB, Chan SH (2006) Solid State Ion 177(13–14):1227–1235CrossRefGoogle Scholar
  9. 9.
    Steele BCH, Bae J-M (1998) Solid State Ion 106(3-4):255–261CrossRefGoogle Scholar
  10. 10.
    Brinker CJ and Scherer GW (1990) Sol–Gel Sci., The physics and chemistry of sol–gel processing, (Academic Press, Inc., San Diego, CA) p 1–1Google Scholar
  11. 11.
    Colomer MT, Anderson MA (2001) J Non-Cryst Solids 290(2–3):93–104CrossRefGoogle Scholar
  12. 12.
    Colomer MT, Jurado JR (1997) J Non-Cryst Solids 217:48–54CrossRefGoogle Scholar
  13. 13.
    Doeuff S, Henry M, Sanchez C, Livage J (1987) J Non-Cryst Solids 89:206–216CrossRefGoogle Scholar
  14. 14.
    Muñoz-Aguado MJ, Gregorkiewitz M, Larbot A (1992) Mat Res Bull 27:87–97CrossRefGoogle Scholar
  15. 15.
    Colomer MT, Velasco MJ, Jurado JR (2006) J Sol-Gel Sci Technol 39:211–222CrossRefGoogle Scholar
  16. 16.
    Wu JC-S, Cheng L-C (2000) J Memb Sci 167:253–261CrossRefGoogle Scholar
  17. 17.
    Nakamoto K (1978) Infrared and Raman spectra of Inorganic and Coordination Compounds, 3rd edn. Wiley, New York, p 232Google Scholar
  18. 18.
    Ribot F, Toledano P, Sanchez C (1991) Inorg Chim Acta 185(2):239–245CrossRefGoogle Scholar
  19. 19.
    Catterick J, Thornton P (1977) Adv Inorg Chem and Radio Chem H.J. Emeleus and A.G. Sharpe (eds.) Vol. 20 (Academic Press, New York, London) p 291Google Scholar
  20. 20.
    Von Thiele KH, Panse M (1978) Z Anorg Allg Chem 441(4):23–28CrossRefGoogle Scholar
  21. 21.
    Balabanov SS, Gavrishchuk EM, Permin DA (2012) Inorg Mat 48(5):500–503CrossRefGoogle Scholar
  22. 22.
    McDevitt NT, Baun WL (1964) Spectrochim Acta 20(5):799–808CrossRefGoogle Scholar
  23. 23.
    Phillipi CM, Mazdiyasui KS (1971) J Am Ceram Soc 54:254–258CrossRefGoogle Scholar
  24. 24.
    Nogami M (1985) J Non-Cryst Solids 69(5):415–423CrossRefGoogle Scholar
  25. 25.
    Yashima M, Kato T, Kakihana M, Ali Gulgun MA, Matsuo Y, Yoshimura M (1997) J Mater Res 12(10):2575–2582CrossRefGoogle Scholar
  26. 26.
    Badenes March JA, Llusar Vicent M, Calbo Paus J, Tena Gómez MA, Monrós Tomás G (2005) Sol State Sci 7:1015–1024CrossRefGoogle Scholar
  27. 27.
    Colomer MT, unpublished workGoogle Scholar
  28. 28.
    Shannon RD (1976) Acta Cryst A 32:751–767CrossRefGoogle Scholar
  29. 29.
    Colomer MT, Durán P, Caballero A, Jurado JR (1997) Mater Sci Eng A 229(1–2):114–122Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Instituto de Cerámica y Vidrio, CSICMadridSpain

Personalised recommendations