Journal of Sol-Gel Science and Technology

, Volume 66, Issue 3, pp 497–503 | Cite as

Transparent amorphous Indium-Gallium-Zinc-Oxygen thin film transistors using solution technology at low temperature

  • Xifeng Li
  • Qian Li
  • Jianhua Zhang
Original Paper


Transparent amorphous Indium-Gallium-Zinc-oxide thin films transistors (a-IGZO TFTs) were fabricated using spin-coating technique at a relative low annealing temperature of 300 °C. The effects of the gallium (Ga) concentration on the properties of the IGZO solutions, the optical properties of the a-IGZO films,and the a-IGZO TFTs device properties were researched. The a-IGZO thin films were uniform and smooth, root mean square roughness of IGZO films was less than 0.4 nm, and the transmittance was more than 80 % in the visible wavelength. The results showed that An appropriate amount of Ga doping and annealing temperature could significant improve the a-IGZO TFTs’ device performance. A saturation mobility of 0.04 cm2 V−1 s−1 was obtained when the Ga concentration reached 10.7 %.


Solution Low temperature Amorphous Indium-Gallium-Zinc-Oxygen (a-IGZO) Thin film transistors (TFTs) 



This work was supported by National Natural Science Foundation of China under Grant No 61006005 and Shanghai science and technology commission under Grant No 10dz1100102.


  1. 1.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Nature 432:488–492CrossRefGoogle Scholar
  2. 2.
    Kamiya T, Nomura K, Hosono H (2010) Sci Technol Adv Mater 11:044305CrossRefGoogle Scholar
  3. 3.
    Hosono H (2006) J Non-Cryst Solids 352:851–858CrossRefGoogle Scholar
  4. 4.
    Choi CG, Seo SJ, Bae BS (2008) Electrochem Solid-State Lett 11:H7–H9CrossRefGoogle Scholar
  5. 5.
    Jeong S, Ha YG, Moon J, Facchetti A, Marks T (2010) J Adv Mater 22:1346–1350CrossRefGoogle Scholar
  6. 6.
    Seo S-J, Choi CG, Hwang YH, Bae BS (2008) SID Int. Symp. Digest Tech. Papers 39:1254–1257CrossRefGoogle Scholar
  7. 7.
    Chen KJ, Hung FY, Chang SJ, Young SJ, Hu ZS, Chang SP (2010) J Sol-Gel Sci Technol 54:347–354CrossRefGoogle Scholar
  8. 8.
    Wang Y, Liu XW, Sun XW, Zhao JL, Goh GKL, Vu QV, Yu HY (2010) J Sol-Gel Sci Technol 55:322–327CrossRefGoogle Scholar
  9. 9.
    Kim YH, Han MK, Han JI, Park SK (2010) IEEE Trans. Electron. Dev. 57:1009CrossRefGoogle Scholar
  10. 10.
    Ito M, Miyazaki C, Ishizaki M, Kon M, Ikeda N, Okubo T, Matsubara R, Hatta K, Ugajin Y, Sekine N (2008) J Non-Cryst Solids 354:2777–2782CrossRefGoogle Scholar
  11. 11.
    Suresh A, Gollakota P, Wellenius P, Dhawan A, Muth JF (2008) Thin Solid Films 516:1326–1329CrossRefGoogle Scholar
  12. 12.
    Hwang S, Lee JH, Woo CH, Lee JY, Cho HK (2011) Thin Solid Film. 519:5146–5149CrossRefGoogle Scholar
  13. 13.
    Choi JH, Hwang SM, Lee CM, Kim JC, Park GC, Joo J, Lim JH (2011) J. Crys, Growth. 326:175–178CrossRefGoogle Scholar
  14. 14.
    Jeong S, Moon J (2012) J Mater Chem 22:1243–1250CrossRefGoogle Scholar
  15. 15.
    Kim GH, Shin HS, Ahn BD, Kim KH, Park WJ, Kim HJ (2009) J Electrochem Soc 156:H7–H9CrossRefGoogle Scholar
  16. 16.
    Mottern ML, Tyholdt F, Ulyashin A, Helvoort ATJ, Verweij H, Bredesen R (2007) Thin Solid Films 515:3918–3926CrossRefGoogle Scholar
  17. 17.
    Lee DH, Chang YJ, Herman GS, Chang CH (2007) Adv Mater 19:843–847CrossRefGoogle Scholar
  18. 18.
    Takechi K, Nakata M, Eguchi T, Yamaguchi H, Kaneko S (2009) Jpn J Appl Phys 48:011301CrossRefGoogle Scholar
  19. 19.
    Gavryushin V, Raciukaitis G, Juodzbalis D, Kazlauskas A, Kubertavicius V (1994) J Cryst Growth 138:924CrossRefGoogle Scholar
  20. 20.
    Koo CY, Song K, Jung Y, Yang W, Kim S-H, Jeong S, Moon J (2012) Appl. Mater. Interfaces. 4:1456–1461CrossRefGoogle Scholar
  21. 21.
    Jeong S, Lee J-Y, Lee SS, Oh S-W, Lee HH, Seo Y-H, Ryu B-H, Choi Y (2011) J Mater Chem 21:17066CrossRefGoogle Scholar
  22. 22.
    Kamiya T, Nomura K, Hosono H (2009) J. Disp. Technol. 5:468–483CrossRefGoogle Scholar
  23. 23.
    Kamiya T, Nomura K, Hosono H (2010) Phys Status Solidi A 207:1698–1703CrossRefGoogle Scholar
  24. 24.
    Kang J, Lee SJ, Kim C-H, Chae GS, Jun M, Hwang YK, Lee W, Myoung J-M (2012) Semicond. Sci. And Technol. 27:065002CrossRefGoogle Scholar
  25. 25.
    Kim KM, Kim CW, Heo J-S, Na H, Lee JE, Park CB, Bae J-U, Kim C-D, Jun M, Hwang YK, Meyers ST, Grenville A, Keszler DA (2011) Appl. Phy. Lett. 99:242109CrossRefGoogle Scholar
  26. 26.
    Kim GH, Jeong WH, Kim HJ (2010) Phys Status Solidi A 207:1677–1679CrossRefGoogle Scholar
  27. 27.
    Matters M, Leeuw DD, Herwig P, Brown A (1999) Synth Met 102:998CrossRefGoogle Scholar
  28. 28.
    Jeong Y, Song K, Kim D, Koo CY, Moon J (2009) J Electrochem Soc 156:H808–H812CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Display and System Applications of Ministry of EducationShanghai UniversityShanghaiChina

Personalised recommendations