Skip to main content
Log in

Transparent amorphous Indium-Gallium-Zinc-Oxygen thin film transistors using solution technology at low temperature

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transparent amorphous Indium-Gallium-Zinc-oxide thin films transistors (a-IGZO TFTs) were fabricated using spin-coating technique at a relative low annealing temperature of 300 °C. The effects of the gallium (Ga) concentration on the properties of the IGZO solutions, the optical properties of the a-IGZO films,and the a-IGZO TFTs device properties were researched. The a-IGZO thin films were uniform and smooth, root mean square roughness of IGZO films was less than 0.4 nm, and the transmittance was more than 80 % in the visible wavelength. The results showed that An appropriate amount of Ga doping and annealing temperature could significant improve the a-IGZO TFTs’ device performance. A saturation mobility of 0.04 cm2 V−1 s−1 was obtained when the Ga concentration reached 10.7 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Nature 432:488–492

    Article  CAS  Google Scholar 

  2. Kamiya T, Nomura K, Hosono H (2010) Sci Technol Adv Mater 11:044305

    Article  Google Scholar 

  3. Hosono H (2006) J Non-Cryst Solids 352:851–858

    Article  CAS  Google Scholar 

  4. Choi CG, Seo SJ, Bae BS (2008) Electrochem Solid-State Lett 11:H7–H9

    Article  CAS  Google Scholar 

  5. Jeong S, Ha YG, Moon J, Facchetti A, Marks T (2010) J Adv Mater 22:1346–1350

    Article  CAS  Google Scholar 

  6. Seo S-J, Choi CG, Hwang YH, Bae BS (2008) SID Int. Symp. Digest Tech. Papers 39:1254–1257

    Article  CAS  Google Scholar 

  7. Chen KJ, Hung FY, Chang SJ, Young SJ, Hu ZS, Chang SP (2010) J Sol-Gel Sci Technol 54:347–354

    Article  CAS  Google Scholar 

  8. Wang Y, Liu XW, Sun XW, Zhao JL, Goh GKL, Vu QV, Yu HY (2010) J Sol-Gel Sci Technol 55:322–327

    Article  CAS  Google Scholar 

  9. Kim YH, Han MK, Han JI, Park SK (2010) IEEE Trans. Electron. Dev. 57:1009

    Article  CAS  Google Scholar 

  10. Ito M, Miyazaki C, Ishizaki M, Kon M, Ikeda N, Okubo T, Matsubara R, Hatta K, Ugajin Y, Sekine N (2008) J Non-Cryst Solids 354:2777–2782

    Article  CAS  Google Scholar 

  11. Suresh A, Gollakota P, Wellenius P, Dhawan A, Muth JF (2008) Thin Solid Films 516:1326–1329

    Article  CAS  Google Scholar 

  12. Hwang S, Lee JH, Woo CH, Lee JY, Cho HK (2011) Thin Solid Film. 519:5146–5149

    Article  CAS  Google Scholar 

  13. Choi JH, Hwang SM, Lee CM, Kim JC, Park GC, Joo J, Lim JH (2011) J. Crys, Growth. 326:175–178

    Article  CAS  Google Scholar 

  14. Jeong S, Moon J (2012) J Mater Chem 22:1243–1250

    Article  CAS  Google Scholar 

  15. Kim GH, Shin HS, Ahn BD, Kim KH, Park WJ, Kim HJ (2009) J Electrochem Soc 156:H7–H9

    Article  CAS  Google Scholar 

  16. Mottern ML, Tyholdt F, Ulyashin A, Helvoort ATJ, Verweij H, Bredesen R (2007) Thin Solid Films 515:3918–3926

    Article  CAS  Google Scholar 

  17. Lee DH, Chang YJ, Herman GS, Chang CH (2007) Adv Mater 19:843–847

    Article  CAS  Google Scholar 

  18. Takechi K, Nakata M, Eguchi T, Yamaguchi H, Kaneko S (2009) Jpn J Appl Phys 48:011301

    Article  Google Scholar 

  19. Gavryushin V, Raciukaitis G, Juodzbalis D, Kazlauskas A, Kubertavicius V (1994) J Cryst Growth 138:924

    Article  CAS  Google Scholar 

  20. Koo CY, Song K, Jung Y, Yang W, Kim S-H, Jeong S, Moon J (2012) Appl. Mater. Interfaces. 4:1456–1461

    Article  CAS  Google Scholar 

  21. Jeong S, Lee J-Y, Lee SS, Oh S-W, Lee HH, Seo Y-H, Ryu B-H, Choi Y (2011) J Mater Chem 21:17066

    Article  CAS  Google Scholar 

  22. Kamiya T, Nomura K, Hosono H (2009) J. Disp. Technol. 5:468–483

    Article  CAS  Google Scholar 

  23. Kamiya T, Nomura K, Hosono H (2010) Phys Status Solidi A 207:1698–1703

    Article  CAS  Google Scholar 

  24. Kang J, Lee SJ, Kim C-H, Chae GS, Jun M, Hwang YK, Lee W, Myoung J-M (2012) Semicond. Sci. And Technol. 27:065002

    Article  Google Scholar 

  25. Kim KM, Kim CW, Heo J-S, Na H, Lee JE, Park CB, Bae J-U, Kim C-D, Jun M, Hwang YK, Meyers ST, Grenville A, Keszler DA (2011) Appl. Phy. Lett. 99:242109

    Article  Google Scholar 

  26. Kim GH, Jeong WH, Kim HJ (2010) Phys Status Solidi A 207:1677–1679

    Article  CAS  Google Scholar 

  27. Matters M, Leeuw DD, Herwig P, Brown A (1999) Synth Met 102:998

    Article  CAS  Google Scholar 

  28. Jeong Y, Song K, Kim D, Koo CY, Moon J (2009) J Electrochem Soc 156:H808–H812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant No 61006005 and Shanghai science and technology commission under Grant No 10dz1100102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifeng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Li, Q. & Zhang, J. Transparent amorphous Indium-Gallium-Zinc-Oxygen thin film transistors using solution technology at low temperature. J Sol-Gel Sci Technol 66, 497–503 (2013). https://doi.org/10.1007/s10971-013-3037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3037-2

Keywords

Navigation