Journal of Sol-Gel Science and Technology

, Volume 66, Issue 3, pp 399–405 | Cite as

Degradation of organic dye using ZnO nanorods based continuous flow water purifier

  • Yim-Leng Chan
  • Swee-Yong PungEmail author
  • Srimala Sreekantan
Original Paper


Zinc oxide (ZnO) is a common semiconductor material uses in waste water treatment. However, utilizing of ZnO particles could be easily drained away by water and charged into the water system during the photocatalytic treatment. This could result of forming secondary pollution in the water system. Hence, it is necessity to grow ZnO nanorods on polyethylene terephthalate (PET) fiber to minimize the above mentioned problem. In this work, ZnO nanorods were grown on the flexible PET fiber in large quantity using a sol–gel method at low temperature (90 °C). A layer of 1-dodacanethiol polymer was per-coated on the PET fiber to improve the deposition of ZnO seed layer prior to the growth of ZnO nanorods. The PET fiber was covered with high areal density of ZnO nanorods (10.2 ± 0.8 NRs/μm2). Subsequently, this PET fiber was inserted into a glass tube for the setup of continuous flow water purifier. The photocatalytic study for degradation of Rhodamine B solution using this setup indicated that the reaction followed 1st order kinetic with rate constant of 1.28 h−1. The ZnO nanorods were still intact with the fiber after the photocatalytic study. Thus, it is possible to upscale this setup as water purifier to purify the water system.


Inorganic materials Crystal growth Sol–gel process Catalyst 



The authors would like to acknowledge the financial support from Nippon Sheet Glass Foundation (304/PBAHAN/6050237/N100) to conduct this project.

Supplementary material

10971_2013_3022_MOESM1_ESM.docx (649 kb)
Supplementary material 1 (DOCX 649 kb)


  1. 1.
    Spahis N, Addoun A, Mahmoudi H, Ghaffour N (2008) Purification of water by activated carbon prepared from olive stone. Desalination 222(1–3):519–527. doi: 10.1016/j.desal.2007.02.065 CrossRefGoogle Scholar
  2. 2.
    Razvigorova M, Budinova T, Petrov N, Minkova V (1998) Purification of water by activated carbons from apricot stones, lignites and anthracite. Water Res 32(7):2135–2139. doi: 10.1016/S0043-1354 CrossRefGoogle Scholar
  3. 3.
    Zhao H-Z, Wang H-Y, Dockko S, Zhang Y (2011) The formation mechanism of Al13 and its purification with ethanol acetone fractional precipitation method. Sep Purif Technol 81(3):466–471. doi: 10.1016/j.seppur.2011.08.025 CrossRefGoogle Scholar
  4. 4.
    Ndabigengesere A, Narasiah KS (1998) Quality of water treated by coagulation using Moringa oleifera seeds. Water Res 32(3):781–791. doi: 10.1016/S0043-1354 CrossRefGoogle Scholar
  5. 5.
    Mo L, Huanga X (2003) Fouling characteristics and cleaning strategies in a coagulation-microfiltration combination process for water purification. Desalination 159(1):1–9. doi: 10.1016/S0011-9164(03)90040-3 CrossRefGoogle Scholar
  6. 6.
    Shinde MH, Kulkarni SS, Musale DA, Joshi SG (1999) Improvement of the water purification capability of poly(acrylonitrile) ultrafiltration membranes. J Membr Sci 162(1–2):9–22. doi: 10.1016/S0376-7388 CrossRefGoogle Scholar
  7. 7.
    J-n Shen, D-d Li, F-y Jiang, J-h Qui, C-j Gao (2009) Purification and concentration of collagen by charged ultrafiltration membrane of hydrophilic polyacrylonitrile blend. Sep Purif Technol 66(2):257–262. doi: 10.1016/j.seppur.2009.01.002 CrossRefGoogle Scholar
  8. 8.
    Baudequin C, Couallier E, Rakib M, Degerry I, Severac R, Pabon M (2011) Purification of firefighting water containing a fluorinated surfactant by reverse osmosis coupled to electrocoagulation-filtration. Sep Purif Technol 76(3):275–282. doi: 10.1016/j.seppur.2010.10.016 CrossRefGoogle Scholar
  9. 9.
    Lyon EC (2003) Photocatalytic degradation of pollutants in water and air: basic concepts and application. In: Tarr MA (ed) Chemical degradation methods for wastes and pollutants, 1st edn. CRC Press, FranceGoogle Scholar
  10. 10.
    Liu Z, Misra M (2010) Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4(4):2196–2200. doi: 10.1021/nn9015696 CrossRefGoogle Scholar
  11. 11.
    Pan B, Xie Y, Zhang S, Lv L, Zhang W (2012) Visible Light photocatalytic degradation of RhB by polymer-CdS nanocomposites role of the host functional groups. Appl Mater Interfaces 4(8):3938–3943. doi: 10.1021/am300769b CrossRefGoogle Scholar
  12. 12.
    Bandara J, Klehm U, Kiwi J (2007) Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and orange II under daylight irradiation. Appl Catal B: Environ 76(1–2):73–81. doi: 10.1016/j.apcatb.2007.05.007 CrossRefGoogle Scholar
  13. 13.
    Velmurugan R, Swaminathan M (2011) An efficient nanostructured ZnO for dye sensitized degradation of reactive red 120 dye under solar light. Sol Energy Mater Sol Cells 95(3):942–950. doi: 10.1016/j.solmat.2010.11.029 CrossRefGoogle Scholar
  14. 14.
    Zhuang J, Dai W, Tian Q, Li Z, Xie L, Wang J, Liu P (2010) Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. Langmuir Article 26(12):9686–9694. doi: 10.1021/la100302m CrossRefGoogle Scholar
  15. 15.
    Lai CW, Sreekantan S (2012) Higher water splitting hydrogen generation rate for single crystalline anatase phase of TiO2 nanotube arrays. Eur Phys J Appl Phys 59(2):20403–20409. doi: 10.1051/epjap/2012120250 CrossRefGoogle Scholar
  16. 16.
    Wang G, Chen D, Zhang H, Zhang JZ, Li J (2008) Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity. J Phys Chem C 112(24):8850–8855. doi: 10.1021/jp800379k CrossRefGoogle Scholar
  17. 17.
    Chen C–C (2007) Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions. J Mol Catal A: Chem 264(1–2):82–92. doi: 10.1016/j.molcata.2006.09.013 CrossRefGoogle Scholar
  18. 18.
    Poulios I, Avranas A, Rekliti E, Zouboulis A (2000) Photocatalytic oxidation of Auramine O in the presence of semiconducting oxides. J Chem Technol Biotechnol 75(3):205–212. doi: 10.1002/(sici)1097-4660(200003)75:3<205:aid-jctb201>;2-l CrossRefGoogle Scholar
  19. 19.
    Li J, Srinivasan S, He GN, Kang JY, Wu ST, Ponce FA (2008) Synthesis and luminescence properties of ZnO nanostructures produced by the sol–gel method. J Cryst Growth 310(3):599–603. doi: 10.1016/j.crysgro.2007.11.054 CrossRefGoogle Scholar
  20. 20.
    Byrappa K, Subramani AK, Ananda S, Lokanatha Rai KM, Dinesh R, Yoshimora M (2006) Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull Mater Sci 29(5):433–438CrossRefGoogle Scholar
  21. 21.
    Yan J-F, Lu Y-M, Liang H-W, Liu Y-C, Li B-H, Fan X-W, Zhou J-M (2005) Growth and properties of ZnO nanotubes grown on Si(111) substrate by plasma-assisted molecular beam epitaxy. J Cryst Growth 280(1–2):206–211. doi: 10.1016/j.jcrysgro.2005.03.045 Google Scholar
  22. 22.
    Zeng JH, Jin BB, Wang YF (2009) Facet enhanced photocatalytic effect with uniform single-crystalline ZnO nanodisks. Chem Phys Lett 472(1–3):90–95. doi: 10.1016/j.cplett.2009.02.082 CrossRefGoogle Scholar
  23. 23.
    Fu D, Han G, Meng C (2011) Size-controlled synthesis and photocatalytic degradation properties of nano-sized ZnO nanorods. Mater Lett 72:53–56. doi: 10.1016/j.matlet2011.12.047 CrossRefGoogle Scholar
  24. 24.
    Pung S-Y, Lee W-P, Azizan A (2012) Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int J Inorg Chem 2012:1–9. doi: 10.1155/2012/608183 CrossRefGoogle Scholar
  25. 25.
    Daneshvar N, Aber S, Dorraji MSS, Khataee AR, Rasoulifard MH (2007) Preparation and Investigation of photocatalytic properties of ZnO nanocrystals: effect of operational parameters and kinetic study. World Acad Sci Eng Technol 29(5):267–272Google Scholar
  26. 26.
    Holmboe M, Wold S, Jonsson M (2012) Porosity investigation of compacted bentonite using XRD profile modeling. J Contam Hydrol 128(1–4):19–32. doi: 10.1016/j.jconhyd.2011.10.005 CrossRefGoogle Scholar
  27. 27.
    Toupin M, Brousse T, Bélanger D (2002) Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14(9):3946–3952CrossRefGoogle Scholar
  28. 28.
    Maria Claesson E, Philipse AP (2007) Thiol-functionalized silica colloids, grains, and membranes for irreversible adsorption of metal (oxide) nanoparticles. Colloids Surf A 297(1):46–54. doi: 10.1016/j.colsurfa.2006.10.019 CrossRefGoogle Scholar
  29. 29.
    Baruah S, Thanahayanony C, Dutta J (2008) Growth of ZnO nanowires on nonwoven polyethylene fiber. Sci Technol Adv Mater 2(9):1–8. doi: 10.1088/1468-6996/9/2/025009 Google Scholar
  30. 30.
    Xu S, Wang ZL (2011) One-dimensional ZnO Nanostructures: solution growth and functional properties. Nano Res 4(11):1013–1098. doi: 10.1007/s12274-011-0160-7 CrossRefGoogle Scholar
  31. 31.
    Esfahani H, Javadi AH, Farahmandnejad MA, Nourpour P, Shabani K (2012) Study on kinetic of UV and solar assisted photocatalytic degradation of rhodamine B by TiO2 nanostructure layer. Mater Technol 27(3):261–266Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yim-Leng Chan
    • 1
  • Swee-Yong Pung
    • 1
    Email author
  • Srimala Sreekantan
    • 1
  1. 1.School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains Malaysia, Seri AmpanganNibong TebalMalaysia

Personalised recommendations