Journal of Sol-Gel Science and Technology

, Volume 66, Issue 2, pp 212–219 | Cite as

Utilization of natural anthocyanin pigments as photosensitizers for dye-sensitized solar cells

  • N. Gokilamani
  • N. Muthukumarasamy
  • M. Thambidurai
  • A. Ranjitha
  • Dhayalan Velauthapillai
Original Paper


Nanocrystalline TiO2 thin films have been prepared by sol–gel dip coating method. The X-ray diffraction results showed that TiO2 thin films annealed at 400, 450 and 500 °C are of anatase phase and the peak corresponding to the (1 0 1) plane is present in all the samples. The grain size of TiO2 thin films was found to increase with increasing annealing temperature. The grain size is found to be 20, 26 and 38 nm for the films annealed at 400, 450 and 500 °C. TiO2 thin films were sensitized by natural dyes extract from red cabbage and blue pea. It was found that the absorption peak of red cabbage extract is at about 545 nm while that of blue pea extract is at around 576 and 622 nm respectively. The dye sensitized TiO2 based solar cell sensitized using red cabbage, exhibited a Jsc of 4.38 mA/cm2, Voc of 0.47 V, FF of 0.36 and η of 0.73 % and the solar cell sensitized using blue pea, exhibited a Jsc of 4.16 mA/cm2, Voc of 0.45 V, FF of 0.35 and η of 0.67 %. Natural dyes as sensitizers for dye sensitized solar cells are promising because of their environmental friendliness, low-cost production and designable polychrome modules.


TiO2 thin film Dye sensitized solar cell AFM HRTEM Optical absorption 


  1. 1.
    Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han LY (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45:L638–L640CrossRefGoogle Scholar
  2. 2.
    Hao Sancun, Wu Jihuai, Huang Yunfang, Lin Jianming (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80:209–214CrossRefGoogle Scholar
  3. 3.
    Go′mez-Ortı′z NM, Va′zquez-Maldonado IA, Pe′rez-Espadas AR, Mena-Rejo′n GJ, Azamar-Barrios JA, Oskam G (2010) Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol Energy Mater Sol Cells 94:40–44CrossRefGoogle Scholar
  4. 4.
    Calogero Giuseppe, Di Marco Gaetano (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92:1341–1346CrossRefGoogle Scholar
  5. 5.
    Cherepy NJ, Smestad GP, Gratzel M, Zhang JZ (1997) Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dyesensitized TiO2 nanocrystalline electrode. J Phys Chem B 101:9342–9351CrossRefGoogle Scholar
  6. 6.
    Smestad GP (1998) Education and solar conversion: demonstrating electron transfer. Sol Energy Mater Sol Cells 55:157–178CrossRefGoogle Scholar
  7. 7.
    Dai Q, Rabani J (2002) Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes. J Photochem Photobiol A 148:17–24CrossRefGoogle Scholar
  8. 8.
    Rossetto M, Vanzani P, Mattivi F, Lunelli M, Scarpa M, Rigo A (2002) Synergystic antioxidant effect of catechin and malvidin 3-glucoside on free radicalinitiated peroxidation of linoleic acid in micelles. Arch Biochem Biophys 408:239–245CrossRefGoogle Scholar
  9. 9.
    Markakis P (1982) Anthocyanins as food color. Academic Press, New YorkGoogle Scholar
  10. 10.
    Wongchareea Khwanchit, Meeyoo Vissanu, Chavadej Sumaeth (2007) Solar Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy Mater Sol Cells 91:566–571CrossRefGoogle Scholar
  11. 11.
    Kumara GRA, Kanebo S, Okuya M, Onwona-Agyeman B, Konno A, Tennakone K (2006) Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol Energy Mater Sol Cells 90:1220–1226CrossRefGoogle Scholar
  12. 12.
    Eiji Yamazaki, Masaki Murayama, Naomi Nishikawa, Noritsugu Hashimoto, Masashi Shoyama, Osamu Kurita (2007) Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Sol Energy 81:512–516CrossRefGoogle Scholar
  13. 13.
    Senthil TS, Muthukumarasamy N, Velauthapillai Dhayalan, Agilan S, Thambidurai M, Balasundaraprabhu R (2011) Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renew Energy 36:2484–2488CrossRefGoogle Scholar
  14. 14.
    Terahara N, Oda M, Matsui T, Osajima Y, Saito N, Toki K, Honda T (1996) Five new anthocyanins, ternatins A3, B4, B3, B2 and D2, from Clitoria trenatea flowers. J Nat Prod 59(2):139–144CrossRefGoogle Scholar
  15. 15.
    Kazuma K, Noda N, Suzuki M (2003) Flavonoid composition related to petal color in different lines of Clitoria ternatea. Phytochemistry 64:1133–1139CrossRefGoogle Scholar
  16. 16.
    Kazuma K, Noda N, Suzuki M (2003) Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62(2):229–237CrossRefGoogle Scholar
  17. 17.
    Bagchi D, Sen CK, Bagchi M, Atalay M (2004) Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyaninrich berry extract formula. Biochemistry 69:75–80Google Scholar
  18. 18.
    Yoshida K, Mori M, Kawachi M, Okuno R, Kameda K, Kondo T (2003) A UV-B resistant polyacylated anthocyanin HBA, from blue petals of morning glory. Tetrahedron Lett 44:7875–7880CrossRefGoogle Scholar
  19. 19.
    Ma Hongchao, Yue Lixia, Yu Chunling, Dong Xiaoli, Zhang Xinxin, Xue Mang, Zhang Xiufang, Fu Yinghuan (2012) Synthesis, characterization and photocatalytic activity of Cu-doped Zn/ZnO photocatalyst with carbon modification. J Mater Chem 22:23780–23788CrossRefGoogle Scholar
  20. 20.
    Meng Fanke, Hong Zhanglian, Arndt James, Li Ming, Zhi Mingjia, Yang Feng, Wu Nianqiang (2012) Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing. Nano Res 5:213–221CrossRefGoogle Scholar
  21. 21.
    Fernando JMRC, Senadeera GKR (2008) Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Curr Sci 95:663–666Google Scholar
  22. 22.
    Sheng Meng, Jun Ren, Efthimios Kaxiras (2008) Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications: enhanced light absorption and ultrafast electron injection. Nano Lett 8(10):3266–3272CrossRefGoogle Scholar
  23. 23.
    de Faria Emerson Henrique, Marçal Alex Lemes, Nassar Eduardo José, Ciuffi Katia Jorge, Calefi Paulo Sergio (2007) Sol-Gel TiO2 thin films sensitized with the mulberry pigment cyanidin. Mater Res 10(4):413–417CrossRefGoogle Scholar
  24. 24.
    Buraidah MH, Teo LP, Yusuf SNF, Noor MM, Kufian MZ, Careem MA, Majid SR, Taha RM, and Arof AK TiO2/Chitosan-NH4I(+I2)-BMII-based dye-sensitized solar cells with anthocyanin dyes extracted from black rice and red cabbage. doi: 10.1155/2011/273683
  25. 25.
    Calogero G, DiMarco G, Caramori S, Cazzanti S, Argazzi R, Bignozzi CA (2009) Natural dye senstizers for photoelectrochemical cells. Energy Environ Sci 2:1162–1172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. Gokilamani
    • 1
  • N. Muthukumarasamy
    • 1
  • M. Thambidurai
    • 2
  • A. Ranjitha
    • 1
  • Dhayalan Velauthapillai
    • 3
  1. 1.Department of PhysicsCoimbatore Institute of TechnologyCoimbatoreIndia
  2. 2.Department of Electrical and Computer EngineeringGlobal Frontier Center for Multiscale Energy Systems, Seoul National UniversitySeoulRepublic of Korea
  3. 3.Department of EngineeringUniversity College of BergenBergenNorway

Personalised recommendations