Advertisement

Journal of Sol-Gel Science and Technology

, Volume 66, Issue 1, pp 139–144 | Cite as

Electrospun Pd-doped ZnO nanofibers for enhanced photocatalytic degradation of methylene blue

  • Zhitao Han
  • Sisi Li
  • Jinkui Chu
  • Yong Chen
Article

Abstract

Pure and Pd-doped ZnO nanofibers were synthesized via an electrospinning technique, in which polyvinylpyrrolidone was used as the fiber template, zinc acetate/palladium chloride as the precursors, and a mixture of ethanol/acid acetate/water at ratio of 8:5:2 (v/v/v) as the co-solvent. The electrospun fibers were calcined at 600 °C in air for 2 h and characterized by various methods. The photocatalytic activity of the pure and Pd-doped ZnO nanofibers was studied through the photodegradation of methylene blue. Comparing to the pure ZnO nanofibers, the Pd-doped catalysts showed a much enhanced photodegradation efficiency. The possible mechanism was also discussed.

Keywords

Nanofibers Electrospinning Photocatalysis ZnO 

Notes

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program: 2011CB302101, 2011CB302105). We would like thank Dr. J. Y. Zhang for the help of XRD characterization and X. Z. Xu for the help of TEM characterization. Z. T. Han is grateful to the Chinese Scholar Council for grant.

References

  1. 1.
    Tada H, Kubo M, Inubushi Y, Ito-Chemical S (2000) Chem Commun 0:977–978CrossRefGoogle Scholar
  2. 2.
    Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Chem Rev 95:69–96CrossRefGoogle Scholar
  3. 3.
    Cho S, Kim S, Jang J, Jung S, Oh E, Lee B, Lee K (2009) J Phys Chem C 113:10452–10458CrossRefGoogle Scholar
  4. 4.
    Jing Q, Fu WY, Li WC, Yang HB, Li MH, Ma JW, Zhou XM, Sun ML, Zhao H, Zhang YY, Zhao WY, Zhang LN, Chen H (2012) Appl Surf Sci 258:3604–3610CrossRefGoogle Scholar
  5. 5.
    Ye CH, Bando Y, Shen GZ, Golberg D (2006) J Phys Chem B 110:15146–15151CrossRefGoogle Scholar
  6. 6.
    Kim D, Huh YD (2011) Mater Lett 65:2100–2103CrossRefGoogle Scholar
  7. 7.
    Wang CH, Shao CL, Zhang XT, Liu YC (2009) Inorg Chem 48:7261–7268CrossRefGoogle Scholar
  8. 8.
    Kanjwal MA, Sheikh FA, Barakat AM, Li XQ, Kim HY, Chronakis IS (2012) n. Appl Surf Sci 258:3695–3702CrossRefGoogle Scholar
  9. 9.
    Bandara J, Tennakone K, Jayatilaka PPB (2002) Chemosphere 49:439–445CrossRefGoogle Scholar
  10. 10.
    Uddin MT, Olivier C, Toupance T, Müller LMM, Kleebe HJ, Ziegler J, Jaegermann W, Nicolas Y (2012) Inorg Chem 51:7764–7773CrossRefGoogle Scholar
  11. 11.
    Jung S, Yong K (2011) Chem Commun 47:2643–2645CrossRefGoogle Scholar
  12. 12.
    Jian DL, Gao PX, Cai WJ, Allimim BS, Alpay SP, Ding Y, Wang ZL, Brooks C (2009) J Mater Chem 19:970–975CrossRefGoogle Scholar
  13. 13.
    Faisal M, Khan SB, Rahman MM, Jamal A, Akhtar K, Abdullah MM (2011) J Mater Sci Technol 27:594–600CrossRefGoogle Scholar
  14. 14.
    He YJ, Yu XY, Li TL, Yan LY, Yang BL (2006) Powder Technol 166:72–76CrossRefGoogle Scholar
  15. 15.
    Sinha G, Depero LE, Alessandri I (2011) Appl Mater Interfaces 3:2557–2563CrossRefGoogle Scholar
  16. 16.
    Xu YG, Xu H, Li HM, Xia JX, Liu CT, Liu L (2011) J Alloy Compd 509:3286–3292CrossRefGoogle Scholar
  17. 17.
    Rahimi F, Zad AI (2007) J Phys D Appl Phys 40:7201–7209CrossRefGoogle Scholar
  18. 18.
    Wei SH, Yu Y, Zhou MH (2010) Mater Lett 64:284–286CrossRefGoogle Scholar
  19. 19.
    Ghosh A, Ra EJ, Jin MH, Jeong HK, Kim TH, Biswas C, Lee YH (2011) Adv Func Mater 21:25412547CrossRefGoogle Scholar
  20. 20.
    Zhi MJ, Manivannan A, Meng FK, Wu NQ (2012) J Power Sources 208:345–353CrossRefGoogle Scholar
  21. 21.
    Herricks TE, Kim S, Kim J, Li D, Kwak JH, Grate JW, Kim SH, Xia YN (2005) J Mater Chem 15:3241–3245CrossRefGoogle Scholar
  22. 22.
    Park J, Moon J, Lee S, Lim S, Zyung T (2009) Curr Appl Phys 9:S210–S212CrossRefGoogle Scholar
  23. 23.
    Wang HY, Yang Y, Li X, Li LJ, Wang C (2010) Chinese Chem Lett 21:1119–1123CrossRefGoogle Scholar
  24. 24.
    Lin DD, Wu H, Zhang R, Pan W (2009) Chem Mater 21:3479–3484CrossRefGoogle Scholar
  25. 25.
    Li CR, Zhang XQ, Dong WJ, Liu YS (2012) Mater Lett 80(145–147):13Google Scholar
  26. 26.
    Li CR, Chen R, Zhang XQ, Shu SX, Xiong J, Zheng YY, Dong WJ (2011) Mater Lett 65:1327–1330CrossRefGoogle Scholar
  27. 27.
    Cushing SK, Li JT, Meng FK, Senty TR, Suri S, Zhi MJ, Li M, Bristow AD, Wu NQ (2012) J Am Chem Soc 134:15033–15041CrossRefGoogle Scholar
  28. 28.
    Wu WM, Liang SJ, Ding ZX, Zheng HR, Wu L (2012) J Sol-Gel Sci Technol 61:570–576CrossRefGoogle Scholar
  29. 29.
    Li JT, Cushing SK, Bright J, Meng FK, Senty TR, Zheng P, Bristow AD, Wu NQ (2013) ACS Catal 3:47–51CrossRefGoogle Scholar
  30. 30.
    Yan XD, Zou CW, Gao XD, Gao W (2012) J Mater Chem 22:5629–5640CrossRefGoogle Scholar
  31. 31.
    Shen YB, Yamazaki T, Liu ZF, Meng D, Kikuta T, Nakatani N, Saito M, Mori M (2009) Sensor Actuat B-Chem 135:524–529CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Ecole Normale SupérieureCNRS-ENS-UPMC UMR 8640ParisFrance
  2. 2.School of Mechanical EngineeringDalian University of TechnologyDalianChina
  3. 3.Institute for Interdisciplinary ResearchJianghan UniversityWuhanChina

Personalised recommendations