Journal of Sol-Gel Science and Technology

, Volume 66, Issue 1, pp 59–67 | Cite as

Preparation and characterization of molecularly imprinted organic–inorganic hybrid materials by sol–gel processing for selective recognition of ibuprofen

  • Ling Zhou
  • Yanyue Kong
  • Shian Zhong
  • Xiaorun Zhou


This work adopted semi-covalent imprinting to prepare molecularly imprinted polymers (MIP) with ibuprofen, a non-steroidal anti-inflammatory drug, as template by sol–gel processing, which is characterized by both the high affinity of covalent binding and the mild operation conditions of non-covalent rebinding. A functional monomer, which was used to synthesize the monomer-imprinted molecule complex, was prepared by multi-step synthesis for the first time. MIP was characterized by Fourier transform IR spectrum and nitrogen adsorption. Thin-layer chromatography separation was used to evaluate the specific molecular recognition ability of MIP. In addition, dynamic and thermodynamic studies on MIP imprinting ibuprofen were undertaken. The results of equilibrium rebinding experiments showed that MIP exhibited good adsorption capacity for ibuprofen. Scatchard analysis illustrated that the template-polymer system shows only one-site binding behavior with a dissociation constant of 1.84 mmol L−1. Dynamic adsorption exhibited pseudo-second-order kinetics. The positive value of ΔHθ and the negative values of ΔGθ demonstrated that the binding system for MIP is endothermic and spontaneous.


Semi-covalent imprinting Ibuprofen Sol–gel processing Thin-layer chromatography Pseudo-second-order kinetics 



The project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and National Natural Science Foundation of China (21276283).


  1. 1.
    El-Sheikh AH, Al-Quse RW, El-Barghouthi MI, Al-Masri FS (2010) Talanta 83:667CrossRefGoogle Scholar
  2. 2.
    Tamayo FG, Turiel E, Martín-Esteban A (2007) J Chromatogr A 1152:32CrossRefGoogle Scholar
  3. 3.
    Zhu GF, Fan J, Gao YB, Gao X, Wang J (2011) J. Talanta 84:1124CrossRefGoogle Scholar
  4. 4.
    Zorita S, Boyd B, Jönsson S, Yilmaz E, Svensson C, Mathiasson L, Bergström S (2008) Anal Chim Acta 626:147CrossRefGoogle Scholar
  5. 5.
    Beltran A, Marcé RM, Cormack PAG, Borrull F (2009) J Chromatogr A 1216:2248CrossRefGoogle Scholar
  6. 6.
    Jiang H, Adamsa CD, Koffskey W (2005) J Chromatogr A 1064:219CrossRefGoogle Scholar
  7. 7.
    Belmont AS, Jaeger S, Knopp D, Niessner R, Gauglitz G, Haupt K (2007) Biosens Bioelectron 22:3267CrossRefGoogle Scholar
  8. 8.
    Sun H, Fung YS (2006) Anal Chim Acta 576:67CrossRefGoogle Scholar
  9. 9.
    Pietrzyk A, Kutner W, Chitta R, Zandler ME, D’Souza F, Sannicolò F, Mussini PR (2009) Anal Chem 81:10061CrossRefGoogle Scholar
  10. 10.
    Holthoff EL, Bright FV (2007) Acc Chem Res 40:756CrossRefGoogle Scholar
  11. 11.
    Volkmann A, Brüggemann O (2006) React Funct Polym 66:1725CrossRefGoogle Scholar
  12. 12.
    Visnjevski A, Schomäcker R, Yilmaz E, Brüggemann O (2005) Catal Commun 6:601CrossRefGoogle Scholar
  13. 13.
    Aït-Haddou H, Leeder SM, Gagné MR (2004) Inorg Chim Acta 357:3854CrossRefGoogle Scholar
  14. 14.
    Díaz-Díaz G, Diñeiro Y, Menéndez MI, Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2011) Polymer 52:2468CrossRefGoogle Scholar
  15. 15.
    Li Y, Yang HH, You QH, Zhuang ZX, Wang XR (2006) Anal Chem 78:317CrossRefGoogle Scholar
  16. 16.
    Chen PY, Nien PC, Wu CT, Wu TH, Lin CW, Ho KC (2009) Anal Chim Acta 643:38CrossRefGoogle Scholar
  17. 17.
    Sellergren B, Allender CJ (2005) Adv Drug Deliv Rev 57:1733CrossRefGoogle Scholar
  18. 18.
    Suedee R, Bodhibukkana C, Tangthong N, Amnuaikit C, Kaewnopparat S, Srichana T (2008) J Controlled Release 129:170CrossRefGoogle Scholar
  19. 19.
    Hillberg AL, Brain KR, Allender CJ (2005) Adv Drug Deliv Rev 57:1875Google Scholar
  20. 20.
    Ebelmen M (1846) Ann Chim Phys 16:129Google Scholar
  21. 21.
    Graham T (1864) J Chem Soc 17:318–327CrossRefGoogle Scholar
  22. 22.
    Sellergren B (ed) (2001) Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry, Elsevier, p 23Google Scholar
  23. 23.
    Marx S, Liron Z (2001) Chem Mater 13:3624CrossRefGoogle Scholar
  24. 24.
    Leung MKP, Chow CF, Lam MHW (2001) J Mater Chem 11:2985CrossRefGoogle Scholar
  25. 25.
    Lin CI, Joseph AK, Chang CK, Wang YC, Lee YD (2003) Anal Chim Acta 481:175CrossRefGoogle Scholar
  26. 26.
    Yang HH, Zhang SQ, Yang W, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) J Am Chem Soc 126:4054CrossRefGoogle Scholar
  27. 27.
    Chang YS, Ko TH, Hsu TJ, Syu MJ (2009) Anal Chem 81:2098CrossRefGoogle Scholar
  28. 28.
    Fernández-González A, Laíño RB, Diaz-García ME, Guardia L, Viale A (2004) J Chromatogr B 804:247CrossRefGoogle Scholar
  29. 29.
    Cacho C, Turiel E, Ayala AD, Pérez-Conde C (2006) J Chromatogr A 1114:255CrossRefGoogle Scholar
  30. 30.
    Azizian S (2004) J Colloid Interf Sci 276:47CrossRefGoogle Scholar
  31. 31.
    Ho YS, McKay G (2000) Water Res 34:735CrossRefGoogle Scholar
  32. 32.
    Ho YS, Wase DAJ, Forster CF (1996) Environ Technol 17:71CrossRefGoogle Scholar
  33. 33.
    Ho YS, McKay G (1998) Adsorp Sci Technol 16:243Google Scholar
  34. 34.
    Ho YS, Ng JCY, McKay G (2001) Sep Sci Technol 36:241CrossRefGoogle Scholar
  35. 35.
    Ho YS, McKay G (1999) Process Biochem 34:451CrossRefGoogle Scholar
  36. 36.
    Ho YS, McKay G (1999) Resour Conserv Recycl 25:171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ling Zhou
    • 1
  • Yanyue Kong
    • 1
  • Shian Zhong
    • 1
  • Xiaorun Zhou
    • 1
  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations