Journal of Sol-Gel Science and Technology

, Volume 65, Issue 2, pp 230–237 | Cite as

Spontaneous formation of mesoporous silica films using non-surfactant template, and optimization with Doehlert designs, for adsorbent for polycyclic aromatic hydrocarbons

  • Isoshi Nukatsuka
  • Kouta Kodate
  • Ken Iwasaki
  • Hideo Aoki
  • Syo Kasahara
  • Fumihiko Kitagawa


To prepare mesoporous silica thin-films by a simple and environmentally friendly pathway, spontaneous formation of silica thin-films in a sol–gel solution without surfactants was studied. The silica thin-films were prepared by immersing a glass substrate, such as a cylindrical test-tube, into a sol–gel solution containing tetraethoxysilane, water, acetic acid, 2-propanol, and triethylene glycol as a pore-forming agent. The resulting thin-films were transparent. The presence of mesopores was confirmed by field-emission scanning electron microscopy, atomic-force microscopy and nitrogen adsorption–desorption isotherms. The Barrett–Joyner–Halenda plot from the adsorption branch of the isotherms indicated that the pore diameter was 2.6 nm. To illustrate the potential use of the film as an adsorbent, the extraction of polycyclic aromatic hydrocarbons was conducted using the chemically modified silica thin-film coated on a test-tube. The composition of the sol–gel solution was optimized using experimental design, i.e., Doehlert design, and recovery of polycyclic aromatic hydrocarbons.


Mesoporous silica Thin-film Non-surfactant template Non-evaporation-induced self-assembly Adsorbents Polycyclic aromatic hydrocarbons 



The authors thank Professor T. Ono, Mr. T. Wakasugi, and Ms. N. Anbo for their help with AFM. This work was partly supported by Research for Promoting Technological Seeds (No. 02-004), funded by the Japan Science and Technology Agency.

Supplementary material

10971_2012_2929_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1,511 kb)


  1. 1.
    Hernández-Morales V, Nava R, Acosta-Silva YJ, Macías-Sánchez SA, Pérez-Bueno JJ, Pawelec B (2012) Microporous Mesoporous Mater 160:133–142CrossRefGoogle Scholar
  2. 2.
    Casas E, van Grieken R, Escola JM (2012) Appl Catal A 437–438:44–52Google Scholar
  3. 3.
    Widyaningrum RN, Church T, Zhao M, Harris AT (2012) Int J Hydrogen Energy 37:9590–9601CrossRefGoogle Scholar
  4. 4.
    Chi F, Yan L, Yan H, Jiang B, Lv H (2012) Yuan Xi. Opt Lett 37:1406–1408CrossRefGoogle Scholar
  5. 5.
    Suto Y, Uchida T, Kumata H, Tsuzuki M, Fujiwara K (2011) Anal Sci 27:673–674CrossRefGoogle Scholar
  6. 6.
    Yasmin T, Müller K (2011) J Chromatogr A 1218:6464–6475CrossRefGoogle Scholar
  7. 7.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  8. 8.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  9. 9.
    Wan Y, Zhao D (2007) Chem Rev 107:2821–2860CrossRefGoogle Scholar
  10. 10.
    Edler KJ, Roser SJ (2001) Int Rev Phys Chem 20:387–466Google Scholar
  11. 11.
    Grosso D, Cagnol F (2004) Soler-Illia GJdeAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C. Adv Funct Mater 14:309–322CrossRefGoogle Scholar
  12. 12.
    Guliants VV, Carreon MA, Lin YS (2004) J Mem Sci 235:53–72CrossRefGoogle Scholar
  13. 13.
    Innocenzi P, Malfatti L, Kidchob T, Falcaro P (2009) Chem Mater 21:2555–2564CrossRefGoogle Scholar
  14. 14.
    Walcarius A, Kuhn A (2008) Trends Anal Chem 27:593–603CrossRefGoogle Scholar
  15. 15.
    Wei Y, Jin D, Ding T, Shih W-H, Liu X, Cheng SZD, Fu Q (1998) Adv Mater 10:313–316CrossRefGoogle Scholar
  16. 16.
    Wei Y, Xu J, Dong H, Dong JH, Qiu K, Jansen-Varnum SA (1999) Chem Mater 11:2023–2029CrossRefGoogle Scholar
  17. 17.
    Pang JB, Qiu KY, Wei Y, Lei XJ, Liu ZF (2000) Chem Commun 477–478Google Scholar
  18. 18.
    Pang JB, Qiu KY, Wei Y (2001) Chem Mater 13:2361–2365CrossRefGoogle Scholar
  19. 19.
    Pang JB, Qiu KY, Wei Y (2001) J Non-Cryst Solids 283:101–108CrossRefGoogle Scholar
  20. 20.
    Jansen JC, Shan Z, Marchese L, Zhou W, Puil Nvd, Maschmeyer Th (2001) Chem Commun 713–714Google Scholar
  21. 21.
    Polarz S, Smarsly B, Bronstein L, Antonietti M (2001) Angew Chem Int Ed 40:4417–4421CrossRefGoogle Scholar
  22. 22.
    Liu C, Lambert JB, Fu L (2004) J Org Chem 69:2213–2216CrossRefGoogle Scholar
  23. 23.
    Reale E, Leyva A, Corma A, Martínez C (2005) García, Rey F. J Mater Chem 15:1742–1754CrossRefGoogle Scholar
  24. 24.
    Baù L, Bártová B, Arduini M, Mancin F (2009) Chem Commun 7584–7586Google Scholar
  25. 25.
    Feng P, Xu Y, Wu D (2007) Chin Chem Lett 8:1182–1186CrossRefGoogle Scholar
  26. 26.
    de Zárate DO, Fernández L, Beltrán A, Guillem C, Latorre J, Beltrán D, Amorós P (2008) Solid State Sci 10:587–601CrossRefGoogle Scholar
  27. 27.
    Larsen G, Lotero E, Marquez M (2000) Chem Mater 12:1513–1515CrossRefGoogle Scholar
  28. 28.
    Mitra A, Bhaumik A, Imae T (2004) J Nanosci Nanotechnol 4:1052–1055CrossRefGoogle Scholar
  29. 29.
    Yang D, Xu Y, Wu D, Sun Y, Zhu H, Deng F (2007) J Phys Chem C 111:999–1004CrossRefGoogle Scholar
  30. 30.
    Xu Y, Xu S, Emmler T, Roelofs F, Boettcher C, Haag R, Buntkowsky G (2008) Chem Eur J 14:3311–3315CrossRefGoogle Scholar
  31. 31.
    Pedroni V, Schulz PC, de Ferreira MEG, Morini MA (2000) Colloid Polym Sci 278:964–971CrossRefGoogle Scholar
  32. 32.
    Wang J, Groen JC, Coppens M-O (2008) J Phys Chem C 112:19336–19345CrossRefGoogle Scholar
  33. 33.
    Baccile N, Babonneau F, Thomas B, Coradin T (2009) J Mater Chem 19:8537–8559CrossRefGoogle Scholar
  34. 34.
    Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA (1996) Nature 379:703–705CrossRefGoogle Scholar
  35. 35.
    Grosso D (2011) J Mater Chem 21:17033–17038CrossRefGoogle Scholar
  36. 36.
    Bruzzonit MC, Fungi M, Sarzanini C (2010) Anal Methods 2:739–745CrossRefGoogle Scholar
  37. 37.
    Ferreira SLC, dos Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JM (2004) Talanta 63:1061–1067CrossRefGoogle Scholar
  38. 38.
    Shchipunov YA, Karpenko TY (2004) Langmuir 20:3882–3887CrossRefGoogle Scholar
  39. 39.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  40. 40.
    Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström Å, Pettersen J, Bergman R (1988) Chemomet Intellig Lab Sys 42:3–40CrossRefGoogle Scholar
  41. 41.
    Raillard C (2005) HÉquet V, Le Cloirec P, Legrand J. J Sol-Gel Sci Tech 34:5–14CrossRefGoogle Scholar
  42. 42.
    Vaz FAS, Moutinho AM, de Mendonça JPRF, de Araújo RT, Ribeiro SJL, Polachini FC, Messaddeq Y, de Oliveira MAL (2012) Microchem J 100:21–26CrossRefGoogle Scholar
  43. 43.
    Carta D, Villanova L, Costacurta S, Patelli A, Poli I, Vezz S, Scopece P, Lisi F, Smith-Miles K, Hyndman RJ, Hill AJ, Falcaro P (2011) Anal Chem 83:6373–6380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Isoshi Nukatsuka
    • 1
  • Kouta Kodate
    • 1
  • Ken Iwasaki
    • 1
  • Hideo Aoki
    • 1
  • Syo Kasahara
    • 1
  • Fumihiko Kitagawa
    • 1
  1. 1.Department of Frontier Materials Chemistry, Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan

Personalised recommendations