Advertisement

Journal of Sol-Gel Science and Technology

, Volume 65, Issue 2, pp 130–134 | Cite as

Sol–gel processed indium zinc oxide thin film and transparent thin-film transistors

  • Xifeng Li
  • Qian Li
  • Enlong Xin
  • Jianhua Zhang
Original Paper

Abstract

Indium–zinc oxide (IZO) thin films were fabricated by spin coating using acetate- and nitrate-based precursors, and thin film transistors (TFTs) were further fabricated employing the IZO films as the active channel layer. The impact of the indium concentration on the properties of the solutions, the structure and optical transmittance properties of the IZO films and the IZO TFTs device properties were researched in this article. The IZO films with amorphous structure were obtained when the annealing temperature is 500 °C. The transmittance could reach ~90 % (including glass substrate) during the visible region of 400–760 nm. Higher indium concentration can improve the IZO TFTs’ filed effect mobility. A Ion–Ioff of 6.0 × 106 and a mobility of 0.13 cm2/Vs were obtained when the indium concentration is 60 %. IZO TFTs’ performance could deteriorate when the indium concentration more than 60 %.

Keywords

Indium–zinc oxide (IZO) Solution process Thin film transistors Transmittance 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant No. 61006005 and Shanghai science and technology commission under Grant No. 10dz1100102.

References

  1. 1.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Honoso H (2004) Nature 432:488–492CrossRefGoogle Scholar
  2. 2.
    Hosono H (2006) J Non Cryst Solids 352:851–858CrossRefGoogle Scholar
  3. 3.
    Kamiya T, Nomura K, Hosono H (2010) Sci Technol Adv Mater 11:044305CrossRefGoogle Scholar
  4. 4.
    Choi CG, Seo SJ, Bae BS (2008) Electrochem Solid State Lett 11(1):H7CrossRefGoogle Scholar
  5. 5.
    Jeong S, Ha YG, Moon J, Facchetti A, Marks TJ (2010) Adv Mater 22:1346–1350CrossRefGoogle Scholar
  6. 6.
    Seo SJ, Choi CG, Hwang YH, Bae BS (2009) J Phys D Appl Phys 42:035106CrossRefGoogle Scholar
  7. 7.
    Chen KJ, Hung FY, Chang SJ, Young SJ, Hu ZS, Chang SP (2010) J Sol–Gel Sci Technol 54:347–354CrossRefGoogle Scholar
  8. 8.
    Wang Y, Liu XW, Sun XW, Zhao JL, Goh GKL, Vu QV, Yu HY (2010) J Sol–Gel Sci Technol 55:322–327CrossRefGoogle Scholar
  9. 9.
    Kim YH, Han MK, Han JI, Park SK (2010) Trans Electron Device 57(5):1009CrossRefGoogle Scholar
  10. 10.
    Martins R, Barquinha P, Pimentel A, Pereira L, Fortunato E (2005) Phys Status Solid (A) 202(9):R95CrossRefGoogle Scholar
  11. 11.
    Kim GH, Shin HS, Ahn BD, Kim KH, Park WJ, Kim HJ (2009) J Electrochem Soc 156(1):H7–H9CrossRefGoogle Scholar
  12. 12.
    Kim SJ, Kim DL, Rim YS, Jeong WH, Kim DN, Yoon DH, Kim HJ (2011) J Cryst Growth 326:163–165CrossRefGoogle Scholar
  13. 13.
    Pasquarelli RM, Curtis CJ, Miedaner A, Hest MFAMV, O’Hayre RP, Ginley DS (2010) Inorg Chem 49:5424–5431CrossRefGoogle Scholar
  14. 14.
    Mottern ML, Tyholdt F, Ulyashin A, Helvoort ATJ, Verweij H, Bredesen R (2007) Thin Solid Films 515:3918–3926CrossRefGoogle Scholar
  15. 15.
    Song K, Kim D, Li XS, Jun T, Jeong Y, Moon J (2009) J Mater Chem 19:8881–8886CrossRefGoogle Scholar
  16. 16.
    Seo SJ, Choi CG, Hwang YH, Bae BS (2008) SID 08 DIGEST 1254Google Scholar
  17. 17.
    Lee DH, Chang YJ, Herman GS, Chang CH (2007) Adv Mater 19:843–847CrossRefGoogle Scholar
  18. 18.
    Kim D, Koo CY, Song K, Jeong Y, Moon J (2009) Appl Phys Lett 95:103501CrossRefGoogle Scholar
  19. 19.
    Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H (2011) Nat Mater 10:45CrossRefGoogle Scholar
  20. 20.
    Pasquarelli RM, Ginley DS, O’Hayre R (2011) Chem Soc Rev 40:5406–5441CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Display and System Applications of Ministry of EducationShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations