Advertisement

Journal of Sol-Gel Science and Technology

, Volume 64, Issue 3, pp 711–717 | Cite as

Effect of Tb content on microstructure and ferroelectric properties of Bi4−x Tb x Ti3O12 thin films grown by sol–gel method

  • Ling Pei
  • Ni Hu
  • Gang Deng
  • Yiwan Chen
  • Yeguang Bie
  • Meiya Li
  • Xiaolian Liu
Original Paper

Abstract

The effects of Tb substitution on the structural and electrical properties of ferroelectric Bi4Ti3O12 (BTO) thin films grown on Pt/TiO2/SiO2/Si substrates by a sol–gel process have been reported. X-ray diffraction indicated A-site Tb substitutions did not change the polycrystalline bi-layered Aurivillius structure of the BTO, but a lattice distortion was observed. The leakage current behavior at room temperature of the films was studied and it was found that the leakage current density decreased from 10−2 to 10−4 A/cm2 with the increase of x under 150 kV/cm. The remnant polarization (2P r ) and dielectric constant (ε r) increase firstly and then decreases with the increase of the Tb content. We observed a substantial increase in the remnant polarization (2P r ) with Tb substitution and obtained a maximum value of~60 μC/cm2 at an applied electric field of 500 kV/cm for x = 0.4. Moreover, this BTT-0.4 capacitor did not show fatigue behaviors after 1.0 × 1010 switching cycles, suggesting an anti-fatigue character.

Keywords

Bi4Ti3O12 ferroelectric film High-valence Tb-doping Tb content Anti-fatigue Sol–gel technique 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of China (Granted No. 50872097) and the Natural Science Foundation of China (Granted No. 11074193).

References

  1. 1.
    Scott JF, Araujo CA (1989) Science 246:1400CrossRefGoogle Scholar
  2. 2.
    Araujo CA, Cuchiaro JD, McMillan LD, Scott MC, Scott JF (1995) Nature 374:627CrossRefGoogle Scholar
  3. 3.
    Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Nature 40:682CrossRefGoogle Scholar
  4. 4.
    Joshi PC, Krupanidhi SB (1993) Appl Phys Lett 62:1928CrossRefGoogle Scholar
  5. 5.
    Jo W, Cho SM, Lee HM, Kim DC (1999) Jpn J Appl Phys 38:2827CrossRefGoogle Scholar
  6. 6.
    Li M, Pei L, Liu J, Yu B, Guo D (2008) Sci China Ser E Tec Sci 51:1843CrossRefGoogle Scholar
  7. 7.
    Chon U, Jang H, Kim M (2002) Phys Rev Lett 89:087601CrossRefGoogle Scholar
  8. 8.
    Li J, Qiao Y, Liu X (2004) Appl Phys Lett 85:3193CrossRefGoogle Scholar
  9. 9.
    Zhong X, Wang J, Zhou Y (2005) J Cryst Growth 277:233CrossRefGoogle Scholar
  10. 10.
    Hu G, Fan S, Cheng X (2007) J Appl Phys 101:054111CrossRefGoogle Scholar
  11. 11.
    Cheng Z, Kannan CV, Ozawa K (2006) Appl Phys Lett 89:032901CrossRefGoogle Scholar
  12. 12.
    Zheng X, He L, Zhou Y, Tang M (2006) Appl Phys Lett 89:252908CrossRefGoogle Scholar
  13. 13.
    Chon U, Jang HM, Shin NS (2007) Physica B 388:190CrossRefGoogle Scholar
  14. 14.
    Guo D, Zhang L, Li M, Liu J (2008) J Am Ceram Soc 91:3280CrossRefGoogle Scholar
  15. 15.
    Wang X, Ishiwara H (2003) Appl Phys Lett 82:2479CrossRefGoogle Scholar
  16. 16.
    Yu B, Li M, Hu Z, Pei L (2008) Appl Phys Lett 93:182909CrossRefGoogle Scholar
  17. 17.
    Liu Z, Wang C, Chen M, Wang Y, Yao K (2004) Mater Lett 58:3648CrossRefGoogle Scholar
  18. 18.
    Chen M, Huang K, Mei X, Huang C, Liu J, Cai A (2009) Trans Nonferr Met Soc China 19:138CrossRefGoogle Scholar
  19. 19.
    Sun Y, Chen M, An W, Cai A, Liu J (2008) Key Eng Mater 82:368Google Scholar
  20. 20.
    Pei L, Li M, Liu J, Yu B, Wang J (2010) Mater Lett 64:364CrossRefGoogle Scholar
  21. 21.
    Cummins SE, Cross LE (1968) J Appl Phys 39:2268CrossRefGoogle Scholar
  22. 22.
    Shimakawa Y, Kubo Y, Tauchi Y (2001) Appl Phys Lett 79:2791CrossRefGoogle Scholar
  23. 23.
    Hong SH, McKinstry ST, Messing GL (2000) J Am Ceram Soc 83:113CrossRefGoogle Scholar
  24. 24.
    Yamaguchi M, Nagomoto T, Omoto O (1997) Thin Solid Films 300:299CrossRefGoogle Scholar
  25. 25.
    Kim JK, Kim JH, Song TK (2002) Thin Solid Films 419:225CrossRefGoogle Scholar
  26. 26.
    Duiker HM, Beale PD (1990) Phys Rev B41:490Google Scholar
  27. 27.
    Lee HN, Hesse D, Zakharov N (2002) Science 296:2006CrossRefGoogle Scholar
  28. 28.
    Cole MW, Joshi PC, Ervin MH (2001) J Appl Phys 89:6336CrossRefGoogle Scholar
  29. 29.
    Noguchi Y, Miyayama M (2001) Appl Phys Lett 78:1903CrossRefGoogle Scholar
  30. 30.
    Wang Y, Nan C (2008) J Appl Phys 103:024103CrossRefGoogle Scholar
  31. 31.
    Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
  32. 32.
    Watanabe T, Mizuhira M, Osada M (2001) J Appl Phys 90:6533CrossRefGoogle Scholar
  33. 33.
    Lee S, Hesse D, Gösele U (2006) Appl Phys Lett 88:062909CrossRefGoogle Scholar
  34. 34.
    Zhu J, Mao X, Chen X (2004) Acta Phys Sin 53:3929Google Scholar
  35. 35.
    Yau CY, Palan R, Tran K, Buchanan RC (2005) Appl Phys Lett 86:032907CrossRefGoogle Scholar
  36. 36.
    Shimakawa Y, Kubo Y, Tauchi Y (2001) Appl Phys Lett 79:2791CrossRefGoogle Scholar
  37. 37.
    Osada M, Tada M, Kakihana M (2001) Jpn J Appl Phys 40:5572CrossRefGoogle Scholar
  38. 38.
    Ikegama S, Ueda J (1967) J Phys Soc Jpn 22:725CrossRefGoogle Scholar
  39. 39.
    Li W, Chen K, Yao Y (2004) Appl Phys Lett 85:4717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ling Pei
    • 1
  • Ni Hu
    • 1
  • Gang Deng
    • 1
  • Yiwan Chen
    • 1
  • Yeguang Bie
    • 1
  • Meiya Li
    • 2
  • Xiaolian Liu
    • 2
  1. 1.School of ScienceHubei University of TechnologyWuhanPeople’s Republic of China
  2. 2.Department of PhysicsWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations