Skip to main content
Log in

Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, CeO2 and cobalt-doped CeO2 nanorods synthesized by surfactant free co-precipitation method. The microstructures of the synthesized products were characterized by XRD, FESEM and TEM. The structural properties of the grown nanorods have been investigated using electron diffraction and X-ray diffraction. High resolution transmission electron microscopy studies show the polycrystalline nature of the Co-doped cerium oxide nanorods with a length of about 300 nm and a diameter of about 10 nm were produced. The X-ray Photoelectron spectrum confirms the presence of cobalt in cerium oxide nanorods. From BET, the specific surface area of the CeO2 (Co-doped) nanostructures (131 m2 g−1) is found to be significantly higher than that of pure CeO2 (52 m2 g−1). The Co-doped cerium nanorods exhibit an excellent photocatalytic performance in rapidly degrading azodyes acid orange 7 (AO7) in aqueous solution under UV illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gates B, Mayers B, Cattle B, Xia YN (2002) Adv Funct Mater 12:219–227

    Article  CAS  Google Scholar 

  2. Li T, Yang SG, Huang LS, Gu BX, Du YW (2004) Nanotechnology 15:1479–1482

    Article  CAS  Google Scholar 

  3. Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Science 291:630–633

    Article  CAS  Google Scholar 

  4. Arul NS, Mangalaraj D, Chen PC, Ponpandian P, Viswanathan C (2011) Mater Lett 65:2635–2638

    Article  CAS  Google Scholar 

  5. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947–1949

    Article  CAS  Google Scholar 

  6. Zhang J, Jiang F, Zhang L (2004) J Phys Chem B 108:7002–7005

    Article  CAS  Google Scholar 

  7. Murugan B, Ramaswamy AV (2007) J Am Chem Soc 129:3062–3063

    Article  CAS  Google Scholar 

  8. Jasinski P, Suzuki T, Anderson HU (2003) Sens Actuators, B 95:73–77

    Article  Google Scholar 

  9. Zhang YW, Si R, Liao CS, Yang CH, Xiao CX, Kou Y (2003) J. Phys. Chem. B 107:10159–10167

    Article  CAS  Google Scholar 

  10. Pan C, Zhang D, Shi LJ (2008) Solid State Chem 181:1298–1306

    Article  CAS  Google Scholar 

  11. Gao F, Lu Q, Komarneni SJ (2006) Nanosci Nanotechnol 6:3812–3819

    Article  CAS  Google Scholar 

  12. Gu F, Wang Z, Han D, Shi C, Guo G (2007) Mater Sci Eng, B 139:62–68

    Article  CAS  Google Scholar 

  13. Zhang D, Fu H, Shi L, Pan C, Li Q, Yu YC (2007) Inorg Chem 46:2446–2451

    Article  CAS  Google Scholar 

  14. Wu GS, Xie G, Yuan XY, Cheng BC, Zhang LD (2004) Mater Res Bull 39:1023–1028

    Article  CAS  Google Scholar 

  15. Tsunekawa S, Fukuda T, Kasuya A (2000) J Appl Phys 87:1318–1321

    Article  CAS  Google Scholar 

  16. Mai MX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109:24380–24385

    Article  CAS  Google Scholar 

  17. Bugayeva N, Robinson J (2007) J Mater Sci Technol 23:237–241

    Article  CAS  Google Scholar 

  18. Cushing BL, Kolesnichenko VL, Connor CLO (2004) J Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  19. Zawadzki MJ (2008) J Alloys Compd 454:347–351

    Article  CAS  Google Scholar 

  20. Yan L, Xing X, Yu R, Qiao L, Chen J, Deng J, Liu G (2007) Scripta Mater 56:301–304

    Article  CAS  Google Scholar 

  21. Yang J, Ferreira JMF (1998) Mater Res Bull 33:389–394

    Article  CAS  Google Scholar 

  22. Tiejun C, Yuchao L, Zhenshan P, Yunfei L, Zongyuan W, Qian D (2009) J Environ Sci 21:997–1004

    Article  Google Scholar 

  23. Zhang TM, Li J, Li H, Li Y, Shen W (2009) Catal Today 148:179–183

    Article  Google Scholar 

  24. Zhang F, Chan S-W, Spanier JE, Apak E, Jin Q, Robinson RD, Irving Herman P (2002) Appl Phys Lett 80:127–129

    Article  CAS  Google Scholar 

  25. May GJ (1978) J Mater Sci 13:261–267

    Article  CAS  Google Scholar 

  26. Li L, Sasaki T, Shimizu Y, Koshizaki N (2009) J Phys Chem C 113:15948–15954

    Article  CAS  Google Scholar 

  27. He Y, Li D, Xiao G, Chen W, Chen Y, Sun M, Huang H, Fu X (2009) J Phys Chem C 113:5254–5262

    Article  CAS  Google Scholar 

  28. Ferrari V, Llois AM, Vildosola V (2010) J Phys: Condens Matter 22:276002–276010

    Article  CAS  Google Scholar 

  29. Han WQ, Wu LJ, Zhu YM (2005) J Am Chem Soc 127:12814–12815

    Article  CAS  Google Scholar 

  30. Elisangela F, Andrea Z, Fabio DG, Cristiano RM, Regina DL, Artur CP (2009) Int Biodeterior Biodegrad 63:280–288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors NSA would like to thank Lunghwa University for offering Internship program, Mr. Shun Cho and Ms. Koug Chen for their help in doing FESEM and Mr. Chih-Hua Yu for helping to perform TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sabari Arul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arul, N.S., Mangalaraj, D., Chen, P.C. et al. Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods. J Sol-Gel Sci Technol 64, 515–523 (2012). https://doi.org/10.1007/s10971-012-2883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2883-7

Keywords

Navigation