Journal of Sol-Gel Science and Technology

, Volume 64, Issue 3, pp 515–523 | Cite as

Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods

  • N. Sabari Arul
  • D. Mangalaraj
  • Pao Chi Chen
  • N. Ponpandian
  • P. Meena
  • Yoshitake Masuda
Original Paper


In this paper, CeO2 and cobalt-doped CeO2 nanorods synthesized by surfactant free co-precipitation method. The microstructures of the synthesized products were characterized by XRD, FESEM and TEM. The structural properties of the grown nanorods have been investigated using electron diffraction and X-ray diffraction. High resolution transmission electron microscopy studies show the polycrystalline nature of the Co-doped cerium oxide nanorods with a length of about 300 nm and a diameter of about 10 nm were produced. The X-ray Photoelectron spectrum confirms the presence of cobalt in cerium oxide nanorods. From BET, the specific surface area of the CeO2 (Co-doped) nanostructures (131 m2 g−1) is found to be significantly higher than that of pure CeO2 (52 m2 g−1). The Co-doped cerium nanorods exhibit an excellent photocatalytic performance in rapidly degrading azodyes acid orange 7 (AO7) in aqueous solution under UV illumination.


Co-doped CeO2 nanorods Chemical synthesis Surface area Photocatalytic properties AZO dyes 



One of the authors NSA would like to thank Lunghwa University for offering Internship program, Mr. Shun Cho and Ms. Koug Chen for their help in doing FESEM and Mr. Chih-Hua Yu for helping to perform TEM measurements.


  1. 1.
    Gates B, Mayers B, Cattle B, Xia YN (2002) Adv Funct Mater 12:219–227CrossRefGoogle Scholar
  2. 2.
    Li T, Yang SG, Huang LS, Gu BX, Du YW (2004) Nanotechnology 15:1479–1482CrossRefGoogle Scholar
  3. 3.
    Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Science 291:630–633CrossRefGoogle Scholar
  4. 4.
    Arul NS, Mangalaraj D, Chen PC, Ponpandian P, Viswanathan C (2011) Mater Lett 65:2635–2638CrossRefGoogle Scholar
  5. 5.
    Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947–1949CrossRefGoogle Scholar
  6. 6.
    Zhang J, Jiang F, Zhang L (2004) J Phys Chem B 108:7002–7005CrossRefGoogle Scholar
  7. 7.
    Murugan B, Ramaswamy AV (2007) J Am Chem Soc 129:3062–3063CrossRefGoogle Scholar
  8. 8.
    Jasinski P, Suzuki T, Anderson HU (2003) Sens Actuators, B 95:73–77CrossRefGoogle Scholar
  9. 9.
    Zhang YW, Si R, Liao CS, Yang CH, Xiao CX, Kou Y (2003) J. Phys. Chem. B 107:10159–10167CrossRefGoogle Scholar
  10. 10.
    Pan C, Zhang D, Shi LJ (2008) Solid State Chem 181:1298–1306CrossRefGoogle Scholar
  11. 11.
    Gao F, Lu Q, Komarneni SJ (2006) Nanosci Nanotechnol 6:3812–3819CrossRefGoogle Scholar
  12. 12.
    Gu F, Wang Z, Han D, Shi C, Guo G (2007) Mater Sci Eng, B 139:62–68CrossRefGoogle Scholar
  13. 13.
    Zhang D, Fu H, Shi L, Pan C, Li Q, Yu YC (2007) Inorg Chem 46:2446–2451CrossRefGoogle Scholar
  14. 14.
    Wu GS, Xie G, Yuan XY, Cheng BC, Zhang LD (2004) Mater Res Bull 39:1023–1028CrossRefGoogle Scholar
  15. 15.
    Tsunekawa S, Fukuda T, Kasuya A (2000) J Appl Phys 87:1318–1321CrossRefGoogle Scholar
  16. 16.
    Mai MX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109:24380–24385CrossRefGoogle Scholar
  17. 17.
    Bugayeva N, Robinson J (2007) J Mater Sci Technol 23:237–241CrossRefGoogle Scholar
  18. 18.
    Cushing BL, Kolesnichenko VL, Connor CLO (2004) J Chem Rev 104:3893–3946CrossRefGoogle Scholar
  19. 19.
    Zawadzki MJ (2008) J Alloys Compd 454:347–351CrossRefGoogle Scholar
  20. 20.
    Yan L, Xing X, Yu R, Qiao L, Chen J, Deng J, Liu G (2007) Scripta Mater 56:301–304CrossRefGoogle Scholar
  21. 21.
    Yang J, Ferreira JMF (1998) Mater Res Bull 33:389–394CrossRefGoogle Scholar
  22. 22.
    Tiejun C, Yuchao L, Zhenshan P, Yunfei L, Zongyuan W, Qian D (2009) J Environ Sci 21:997–1004CrossRefGoogle Scholar
  23. 23.
    Zhang TM, Li J, Li H, Li Y, Shen W (2009) Catal Today 148:179–183CrossRefGoogle Scholar
  24. 24.
    Zhang F, Chan S-W, Spanier JE, Apak E, Jin Q, Robinson RD, Irving Herman P (2002) Appl Phys Lett 80:127–129CrossRefGoogle Scholar
  25. 25.
    May GJ (1978) J Mater Sci 13:261–267CrossRefGoogle Scholar
  26. 26.
    Li L, Sasaki T, Shimizu Y, Koshizaki N (2009) J Phys Chem C 113:15948–15954CrossRefGoogle Scholar
  27. 27.
    He Y, Li D, Xiao G, Chen W, Chen Y, Sun M, Huang H, Fu X (2009) J Phys Chem C 113:5254–5262CrossRefGoogle Scholar
  28. 28.
    Ferrari V, Llois AM, Vildosola V (2010) J Phys: Condens Matter 22:276002–276010CrossRefGoogle Scholar
  29. 29.
    Han WQ, Wu LJ, Zhu YM (2005) J Am Chem Soc 127:12814–12815CrossRefGoogle Scholar
  30. 30.
    Elisangela F, Andrea Z, Fabio DG, Cristiano RM, Regina DL, Artur CP (2009) Int Biodeterior Biodegrad 63:280–288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • N. Sabari Arul
    • 1
  • D. Mangalaraj
    • 1
  • Pao Chi Chen
    • 2
  • N. Ponpandian
    • 1
  • P. Meena
    • 3
  • Yoshitake Masuda
    • 4
  1. 1.Department of Nanoscience and TechnologyBharathiar UniversityCoimbatoreIndia
  2. 2.Department of Chemical and Materials EngineeringLunghwa University of Science and TechnologyTaoyuanTaiwan
  3. 3.Department of PhysicsPSGR Krishnammal College for WomenCoimbatoreIndia
  4. 4.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations