Journal of Sol-Gel Science and Technology

, Volume 64, Issue 1, pp 124–134 | Cite as

Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys

  • Dinesh Balgude
  • Anagha Sabnis
Original Paper


Sol–gel derived organic inorganic hybrid coatings are effective corrosion protective systems for metals. They offer an excellent adhesion to metal as well as to the subsequent coat via strong covalent bond and a three dimensional network of –Si–O–Si– linkages which helps to retard the penetration of corrosive medium through the coating. Unlike conventional surface protection methodology, silane based pre-treatment is an environment friendly technology with number of advantages like room temperature synthesis, chemical inertness, high oxidation and abrasion resistance, excellent thermal stability, very low health hazard etc. Further, the hybrid silane provides required flexibility and an increased compatibility with the subsequent coating in multicoat systems. The performance properties of hybrid systems depend on number of parameters like type of silane (mono or bis), degree of hydrolysis, type and dosage of inhibitive/barrier pigments (in case of pigmented system), application techniques, curing temperature and curing schedule, need to be optimized. A guideline formulation for maximum corrosion resistance with low environmental impact consist of a superprimer (a bis-silane with conventional resins, chrome free inhibitive pigments and additives) followed by epoxy or polyurethane top coat as per the exposure conditions.


Metal pre-treatment Conversion coatings Environmentally benign Organic–inorganic hybrid sol–gel coatings Corrosion resistance 


  1. 1.
    Fontana MG (1987) Corrosion engineering, 3rd edn. McGraw-Hill Book Company, SingaporeGoogle Scholar
  2. 2.
    Twite RL, Bierwagen GP (1998) Prog Org Coat 33:91–100CrossRefGoogle Scholar
  3. 3.
    U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (2008) Toxicological profile for Chromium.
  4. 4.
    U.S. Environmental Protection Agency Washington, DC, August (1998) Toxicological review of hexavalent chromium.
  5. 5.
    Almeida E, Diamantino TC, Figueiredo MO (1998) Surf Coat Technol 106:8CrossRefGoogle Scholar
  6. 6.
    Scholes FH, Soste C, Hughes AE, Hardin SG (2006) Appl Surf Sci 253:1770CrossRefGoogle Scholar
  7. 7.
    Lingjie L, Jingle L, Shenghai Y, Yujing T (2008) J Rare Earths 26:383CrossRefGoogle Scholar
  8. 8.
    Zhang X, Van den Bos C, Sloof WG (2005) Surf Coat Technol 199:92CrossRefGoogle Scholar
  9. 9.
    Nordliena JH, Walmsley JC, Nisancioglu K (2002) Surf Coat Technol 153:72CrossRefGoogle Scholar
  10. 10.
    Chen R, Zhang F, Han EH (2009) Surf Coat Technol 203:1107CrossRefGoogle Scholar
  11. 11.
    Sathyanarayana MN, Yaseen M (1995) Prog Org Coat 26:275CrossRefGoogle Scholar
  12. 12.
    Jones DA (1995) Principles and prevention of corrosion, 2nd edn. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  13. 13.
    Shao M, Fu Y, Hu R, Lin C (2003) Mater Sci Eng 344:323CrossRefGoogle Scholar
  14. 14.
    Magalhaes AAO, Margarit ICP (1999) Electrochim Acta 44:4281CrossRefGoogle Scholar
  15. 15.
    Kendig MW, Davenport AJ, Isaacs HS (1993) Corros Sci 34:41CrossRefGoogle Scholar
  16. 16.
    Zhao J, Xia L, Sehgal A, Lu D, Frankel GS (2001) Surf Coat Technol 140:52CrossRefGoogle Scholar
  17. 17.
    Guan H, Buchheit RG (2004) Corrosion 60:284CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Metroke TL, Gandhi JS, Apblett A (2004) Prog Org Coat 50:231–246CrossRefGoogle Scholar
  20. 20.
    Khobaib M, Reynolds LB, Donley MS (2001) Surf Coat Technol 140:16–23CrossRefGoogle Scholar
  21. 21.
    Leidheiser H Jr, De Costa M, Granata RD (1987) Corrosion 43:382CrossRefGoogle Scholar
  22. 22.
    Sankara Narayanan TSN (2005) Rev Adv Mater Sci 9:130–177Google Scholar
  23. 23.
    Rajagopal C, Vasu KI (2000) Conversion coatings: a reference for phosphating, chromating and anodizing. Tata McGraw-Hill Publishing Company Ltd., New DelhiGoogle Scholar
  24. 24.
    Zucchi F, Grassi V, Frignani A, Trabanelli G (2006) Surf Coat Technol 200:4136CrossRefGoogle Scholar
  25. 25.
    Susac D, Sun X, Mitchell KAR (2003) Appl Surf Sci 207:40CrossRefGoogle Scholar
  26. 26.
    Eaton P, Holmes P, Yarwood J (2001) J Appl Polym Sci 82:2016CrossRefGoogle Scholar
  27. 27.
    Pena-Alonso R, Rubio F, Rubio J, Oteo JL (2007) J Mater Sci 42:595CrossRefGoogle Scholar
  28. 28.
    Torry SA, Campbell A, Cunliffe AV, Tod DA (2006) Int J Adhes Adhes 26:40CrossRefGoogle Scholar
  29. 29.
    Guoli L, Wang X, Li A, Wang W, Zheng L (2007) Surf Coat Technol 201:9571CrossRefGoogle Scholar
  30. 30.
    Abel ML, Allington RD, Shaw SJ, Watts JF (2006) Int J Adhes Adhes 26:2CrossRefGoogle Scholar
  31. 31.
    Tsai M, Lee YD, Chen KN (2002) J Appl Polym Sci 86:468CrossRefGoogle Scholar
  32. 32.
    Jiang H, Zheng Z, Wang X (2008) Vib Spectrosc 46:1CrossRefGoogle Scholar
  33. 33.
    Brochier Salon MC, Bayle PA, Belgacem MN (2008) Colloids Surf A Physicochem Eng Asp 312:83–91CrossRefGoogle Scholar
  34. 34.
    Alvarez P, Collazo A, Perez C (2010) Prog Org Coat 69:175–183CrossRefGoogle Scholar
  35. 35.
    Trabelsi W, Triki E, Ferreira MGS, Montemor MF (2005) Surf Coat Technol 192:284CrossRefGoogle Scholar
  36. 36.
    Cabral A, Duarte RG, Ferreira MGS (2005) Corros Sci 47:869CrossRefGoogle Scholar
  37. 37.
    Quinton JS, Dastoor PC (2000) Surf Interface Anal 30:21CrossRefGoogle Scholar
  38. 38.
    Quinton JS, Dastoor PC (1999) J Mater Sci Lett 18:1833CrossRefGoogle Scholar
  39. 39.
    Quinton JS, Dastoor PC (1999) Appl Surf Sci 152:131CrossRefGoogle Scholar
  40. 40.
    Quinton JS, Dastoor PC (2001) Surf Interface Anal 32:57CrossRefGoogle Scholar
  41. 41.
    McDonough WG (2005) J Res Natl Inst Stand Technol 110:5Google Scholar
  42. 42.
    de Damborenea JJ, Pellegri N, Duran A (1995) J Sol–Gel Sci Technol 4:239CrossRefGoogle Scholar
  43. 43.
    Wen J, Wilkes GL (1996) Chem Mater 8:1667CrossRefGoogle Scholar
  44. 44.
    Wang D, Bierwagen GP (2009) Prog Org Coat 64:327–338CrossRefGoogle Scholar
  45. 45.
    Van Ooij WJ, Zhu DQ, Prasad G, Teredesai N (2000) Surf Eng 16:386CrossRefGoogle Scholar
  46. 46.
    Messaddeq SH, Pulcinelli SH, Messaddeq Y (1999) J Non-Cryst Solids 247:164CrossRefGoogle Scholar
  47. 47.
    Sayilkan H, Sener S, Sener E, Sulu M (2003) Mater Sci 39:733CrossRefGoogle Scholar
  48. 48.
    Ono S, Tsuge H, Nishi Y, Hirano S (2004) J Sol–Gel Sci Technol 29:147CrossRefGoogle Scholar
  49. 49.
    Sugama T (2005) J Coat Technol Res 2:649CrossRefGoogle Scholar
  50. 50.
    Jianguo L, Gaoping G, Chuanwei Y (2006) Surf Coat Technol 200:4967CrossRefGoogle Scholar
  51. 51.
    Conde A, Damborenea JD, Duran A (2006) J Sol–Gel Sci Technol 37:79CrossRefGoogle Scholar
  52. 52.
    Pepe A, Aparicio M, Duran A, Cere S (2006) J Sol–Gel Sci Technol 39:131CrossRefGoogle Scholar
  53. 53.
    Balaskas AC, Kartsonakis IA, Snihirova D, Montemor MF, Kordas G (2011) Prog Org Coat 72:653–662CrossRefGoogle Scholar
  54. 54.
    Andreatta F, Paussa L, Aldighieria P, Lanzuttia A, Rapsb D, Fedrizzia L (2010) Prog Org Coat 69:133–142CrossRefGoogle Scholar
  55. 55.
    Shi H, Liu F, Han E, Sun M (2006) Chin J Aeron 19:S106–S112Google Scholar
  56. 56.
    Defloriana F, Rossi S, Fedrizzi L, Fedel M (2008) Prog Org Coat 63:338–344CrossRefGoogle Scholar
  57. 57.
    De Graeve I, Tourwe E, Biesemans M, Willem R, Terryn H (2008) Prog Org Coat 63:38–42CrossRefGoogle Scholar
  58. 58.
    Lamaka SV, Montemor MF, Galio AF, Zheludkevich ML, Trindade C, Dick LF, Ferreira MGS (2008) Electrochim Acta 53:4773–4783CrossRefGoogle Scholar
  59. 59.
    Lamaka SV, Knornschild G, Snihirova DV, Taryba MG, Zheludkevich ML, Ferreira MGS (2009) Electrochim Acta 55:131–141CrossRefGoogle Scholar
  60. 60.
    Hu J, Li Q, Zhong X, Zhang L, Chen B (2009) Prog Org Coat 66:199–205CrossRefGoogle Scholar
  61. 61.
    Zhang J, Wu C (2009) Prog Org Coat 66:387–392CrossRefGoogle Scholar
  62. 62.
    Trueba M, Trasatti SP (2009) Prog Org Coat 66:254–264CrossRefGoogle Scholar
  63. 63.
    Shi H, Liu F, Han E (2009) Prog Org Coat 66:183–191CrossRefGoogle Scholar
  64. 64.
    Varma R, Duffy B, Cassidy J (2009) Surf Coat Technol 204:277–284CrossRefGoogle Scholar
  65. 65.
    Batana A, Brusciotti F, De Graeve I, Vereecken J, Wenkin M, Piens M (2010) Prog Org Coat 69:126–132CrossRefGoogle Scholar
  66. 66.
    Scott AF, Gray-Munro JE, Shepherd JL (2010) J Colloid Interface Sci 343:474–483CrossRefGoogle Scholar
  67. 67.
    Pinto R, Carmezim MJ, Ferreira MGS, Montemor MF (2010) Prog Org Coat 69:143–149CrossRefGoogle Scholar
  68. 68.
    Zhong X, Li Q, Hu J, Zhang S, Chen B, Xu S, Luo F (2010) Electrochim Acta 55:2424–2429CrossRefGoogle Scholar
  69. 69.
    Barranco V, Carmona N, Galvan JC, Grobelny M, Kwiatkowski L, Villegas MA (2010) Prog Org Coat 68:347–355CrossRefGoogle Scholar
  70. 70.
    Rosero-Navarro NC, Paussa L, Andreatta F, Castro Y, Duran A, Aparicio M, Fedrizzi L (2010) Prog Org Coat 69:167–174CrossRefGoogle Scholar
  71. 71.
    Alvarez P, Collazo A, Covelo A, Novoa XR, Perez C (2010) Prog Org Coat 69:175–183CrossRefGoogle Scholar
  72. 72.
    Wang H, Akid R, Gobara M (2010) Corros Sci 52:2565–2570CrossRefGoogle Scholar
  73. 73.
    Meiffren V, Dumont K, Lenormand P, Ansart F, Manov S (2011) Prog Org Coat 71:329–335CrossRefGoogle Scholar
  74. 74.
    Chakraborty Banerjeea P, Singh Ramana RK (2011) Electrochim Acta 56:3790–3798CrossRefGoogle Scholar
  75. 75.
    Chen M-A, Lu X-B, Guo Z-H, Huang R (2011) Corros Sci 53:2793–2802CrossRefGoogle Scholar
  76. 76.
    Olivier MG, Fedel M, Sciamanna V, Vandermiers C, Motte C, Poelman M, Deflorian F (2011) Prog Org Coat 72:15–20CrossRefGoogle Scholar
  77. 77.
    Andreatta F, Paussa L, Lanzutti A, Rosero Navarro NC, Aparicio M, Castro Y, Duran A, Ondratschek D, Fedrizzi L (2011) Prog Org Coat 72:3–14CrossRefGoogle Scholar
  78. 78.
    Zandi Zand R, Verbeken K, Adriaens A (2011) Prog Org Coat 72:709–715CrossRefGoogle Scholar
  79. 79.
    Gonzalez E, Pavez J, Azocar I, Zagal JH, Zhou X, Melo F, Thompson GE, Paez MA (2011) Electrochim Acta 56:7586–7595CrossRefGoogle Scholar
  80. 80.
    Correa PS, Malfatti CF, Azambuja DS (2011) Prog Org Coat 72:739–747CrossRefGoogle Scholar
  81. 81.
    Collazo A, Hernandez M, Novo XR, Perez C (2011) Electrochim Acta 56:7805–7814CrossRefGoogle Scholar
  82. 82.
    Rosero-Navarro NC, Curioni M, Castro Y, Aparicio M, Thompson GE, Duran A (2011) Surf Coat Technol 206:257–264CrossRefGoogle Scholar
  83. 83.
    Jerman I, Surca Vuk A, Kozelj M, Svegl F, Orel B (2011) Prog Org Coat 72:334–342CrossRefGoogle Scholar
  84. 84.
    Kozhukharov S, Kozhukharov V, Schem M, Aslan M, Wittmar M, Wittmar A, Veith M (2012) Prog Org Coat 73:95–103CrossRefGoogle Scholar
  85. 85.
    Min J, Park JH, Sohn HK, Park JM (2012) J Ind Eng Chem 18:655–660CrossRefGoogle Scholar
  86. 86.
    Joncoux-Chabrol K, Bonino JP, Gressier M, Menu MJ, Pebere N (2012) Surf Coat Technol 206:2884–2891CrossRefGoogle Scholar
  87. 87.
    Motte C, Poelman M, Roobroeck A, Fedel M, Deflorian F, Olivier MG (2012) Prog Org Coat 74:326–333CrossRefGoogle Scholar
  88. 88.
    Collazo A, Covelo A, Novoa XR, Perez C (2012) Prog Org Coat 74:334–342CrossRefGoogle Scholar
  89. 89.
    Yang L, Seth A, Simhadri N, Van Ooij WJ (2005) In: 5th international symposium on silanes and other coupling agents, Toronto, CanadaGoogle Scholar
  90. 90.
    Yang L (2005) Corrosion inhibitor system for superprimer coatings on aerospace alloy. MSc Dissertation, University of CincinnatiGoogle Scholar
  91. 91.
    Shivane C (2006) Environment-friendly anti-corrosion ‘superprimers’ for HDG. MSc Dissertation, University of CincinnatiGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Polymer and Surface Engineering, Institute of Chemical TechnologyNathalal Parekh MargMatunga (E), MumbaiIndia

Personalised recommendations