Skip to main content
Log in

Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel derived organic inorganic hybrid coatings are effective corrosion protective systems for metals. They offer an excellent adhesion to metal as well as to the subsequent coat via strong covalent bond and a three dimensional network of –Si–O–Si– linkages which helps to retard the penetration of corrosive medium through the coating. Unlike conventional surface protection methodology, silane based pre-treatment is an environment friendly technology with number of advantages like room temperature synthesis, chemical inertness, high oxidation and abrasion resistance, excellent thermal stability, very low health hazard etc. Further, the hybrid silane provides required flexibility and an increased compatibility with the subsequent coating in multicoat systems. The performance properties of hybrid systems depend on number of parameters like type of silane (mono or bis), degree of hydrolysis, type and dosage of inhibitive/barrier pigments (in case of pigmented system), application techniques, curing temperature and curing schedule, need to be optimized. A guideline formulation for maximum corrosion resistance with low environmental impact consist of a superprimer (a bis-silane with conventional resins, chrome free inhibitive pigments and additives) followed by epoxy or polyurethane top coat as per the exposure conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fontana MG (1987) Corrosion engineering, 3rd edn. McGraw-Hill Book Company, Singapore

    Google Scholar 

  2. Twite RL, Bierwagen GP (1998) Prog Org Coat 33:91–100

    Article  CAS  Google Scholar 

  3. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (2008) Toxicological profile for Chromium. www.atsdr.cdc.gov/toxprofiles/tp7.pdf

  4. U.S. Environmental Protection Agency Washington, DC, August (1998) Toxicological review of hexavalent chromium. http://www.epa.gov/iris/toxreviews/0144tr.pdf

  5. Almeida E, Diamantino TC, Figueiredo MO (1998) Surf Coat Technol 106:8

    Article  CAS  Google Scholar 

  6. Scholes FH, Soste C, Hughes AE, Hardin SG (2006) Appl Surf Sci 253:1770

    Article  CAS  Google Scholar 

  7. Lingjie L, Jingle L, Shenghai Y, Yujing T (2008) J Rare Earths 26:383

    Article  Google Scholar 

  8. Zhang X, Van den Bos C, Sloof WG (2005) Surf Coat Technol 199:92

    Article  CAS  Google Scholar 

  9. Nordliena JH, Walmsley JC, Nisancioglu K (2002) Surf Coat Technol 153:72

    Article  Google Scholar 

  10. Chen R, Zhang F, Han EH (2009) Surf Coat Technol 203:1107

    Article  Google Scholar 

  11. Sathyanarayana MN, Yaseen M (1995) Prog Org Coat 26:275

    Article  CAS  Google Scholar 

  12. Jones DA (1995) Principles and prevention of corrosion, 2nd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  13. Shao M, Fu Y, Hu R, Lin C (2003) Mater Sci Eng 344:323

    Article  Google Scholar 

  14. Magalhaes AAO, Margarit ICP (1999) Electrochim Acta 44:4281

    Article  CAS  Google Scholar 

  15. Kendig MW, Davenport AJ, Isaacs HS (1993) Corros Sci 34:41

    Article  CAS  Google Scholar 

  16. Zhao J, Xia L, Sehgal A, Lu D, Frankel GS (2001) Surf Coat Technol 140:52

    Article  Google Scholar 

  17. Guan H, Buchheit RG (2004) Corrosion 60:284

    Article  CAS  Google Scholar 

  18. OSHA 3373-10 (2009) Hexavalent chromium. http://www.osha.gov/Publications/OSHA-3373-hexavalent-chromium.pdf

  19. Metroke TL, Gandhi JS, Apblett A (2004) Prog Org Coat 50:231–246

    Article  CAS  Google Scholar 

  20. Khobaib M, Reynolds LB, Donley MS (2001) Surf Coat Technol 140:16–23

    Article  CAS  Google Scholar 

  21. Leidheiser H Jr, De Costa M, Granata RD (1987) Corrosion 43:382

    Article  CAS  Google Scholar 

  22. Sankara Narayanan TSN (2005) Rev Adv Mater Sci 9:130–177

    Google Scholar 

  23. Rajagopal C, Vasu KI (2000) Conversion coatings: a reference for phosphating, chromating and anodizing. Tata McGraw-Hill Publishing Company Ltd., New Delhi

    Google Scholar 

  24. Zucchi F, Grassi V, Frignani A, Trabanelli G (2006) Surf Coat Technol 200:4136

    Article  CAS  Google Scholar 

  25. Susac D, Sun X, Mitchell KAR (2003) Appl Surf Sci 207:40

    Article  CAS  Google Scholar 

  26. Eaton P, Holmes P, Yarwood J (2001) J Appl Polym Sci 82:2016

    Article  CAS  Google Scholar 

  27. Pena-Alonso R, Rubio F, Rubio J, Oteo JL (2007) J Mater Sci 42:595

    Article  CAS  Google Scholar 

  28. Torry SA, Campbell A, Cunliffe AV, Tod DA (2006) Int J Adhes Adhes 26:40

    Article  CAS  Google Scholar 

  29. Guoli L, Wang X, Li A, Wang W, Zheng L (2007) Surf Coat Technol 201:9571

    Article  Google Scholar 

  30. Abel ML, Allington RD, Shaw SJ, Watts JF (2006) Int J Adhes Adhes 26:2

    Article  CAS  Google Scholar 

  31. Tsai M, Lee YD, Chen KN (2002) J Appl Polym Sci 86:468

    Article  CAS  Google Scholar 

  32. Jiang H, Zheng Z, Wang X (2008) Vib Spectrosc 46:1

    Article  CAS  Google Scholar 

  33. Brochier Salon MC, Bayle PA, Belgacem MN (2008) Colloids Surf A Physicochem Eng Asp 312:83–91

    Article  CAS  Google Scholar 

  34. Alvarez P, Collazo A, Perez C (2010) Prog Org Coat 69:175–183

    Article  CAS  Google Scholar 

  35. Trabelsi W, Triki E, Ferreira MGS, Montemor MF (2005) Surf Coat Technol 192:284

    Article  CAS  Google Scholar 

  36. Cabral A, Duarte RG, Ferreira MGS (2005) Corros Sci 47:869

    Article  CAS  Google Scholar 

  37. Quinton JS, Dastoor PC (2000) Surf Interface Anal 30:21

    Article  CAS  Google Scholar 

  38. Quinton JS, Dastoor PC (1999) J Mater Sci Lett 18:1833

    Article  CAS  Google Scholar 

  39. Quinton JS, Dastoor PC (1999) Appl Surf Sci 152:131

    Article  CAS  Google Scholar 

  40. Quinton JS, Dastoor PC (2001) Surf Interface Anal 32:57

    Article  CAS  Google Scholar 

  41. McDonough WG (2005) J Res Natl Inst Stand Technol 110:5

    Google Scholar 

  42. de Damborenea JJ, Pellegri N, Duran A (1995) J Sol–Gel Sci Technol 4:239

    Article  Google Scholar 

  43. Wen J, Wilkes GL (1996) Chem Mater 8:1667

    Article  CAS  Google Scholar 

  44. Wang D, Bierwagen GP (2009) Prog Org Coat 64:327–338

    Article  CAS  Google Scholar 

  45. Van Ooij WJ, Zhu DQ, Prasad G, Teredesai N (2000) Surf Eng 16:386

    Article  Google Scholar 

  46. Messaddeq SH, Pulcinelli SH, Messaddeq Y (1999) J Non-Cryst Solids 247:164

    Article  CAS  Google Scholar 

  47. Sayilkan H, Sener S, Sener E, Sulu M (2003) Mater Sci 39:733

    Article  CAS  Google Scholar 

  48. Ono S, Tsuge H, Nishi Y, Hirano S (2004) J Sol–Gel Sci Technol 29:147

    Article  CAS  Google Scholar 

  49. Sugama T (2005) J Coat Technol Res 2:649

    Article  CAS  Google Scholar 

  50. Jianguo L, Gaoping G, Chuanwei Y (2006) Surf Coat Technol 200:4967

    Article  Google Scholar 

  51. Conde A, Damborenea JD, Duran A (2006) J Sol–Gel Sci Technol 37:79

    Article  CAS  Google Scholar 

  52. Pepe A, Aparicio M, Duran A, Cere S (2006) J Sol–Gel Sci Technol 39:131

    Article  CAS  Google Scholar 

  53. Balaskas AC, Kartsonakis IA, Snihirova D, Montemor MF, Kordas G (2011) Prog Org Coat 72:653–662

    Article  CAS  Google Scholar 

  54. Andreatta F, Paussa L, Aldighieria P, Lanzuttia A, Rapsb D, Fedrizzia L (2010) Prog Org Coat 69:133–142

    Article  CAS  Google Scholar 

  55. Shi H, Liu F, Han E, Sun M (2006) Chin J Aeron 19:S106–S112

    Google Scholar 

  56. Defloriana F, Rossi S, Fedrizzi L, Fedel M (2008) Prog Org Coat 63:338–344

    Article  Google Scholar 

  57. De Graeve I, Tourwe E, Biesemans M, Willem R, Terryn H (2008) Prog Org Coat 63:38–42

    Article  Google Scholar 

  58. Lamaka SV, Montemor MF, Galio AF, Zheludkevich ML, Trindade C, Dick LF, Ferreira MGS (2008) Electrochim Acta 53:4773–4783

    Article  CAS  Google Scholar 

  59. Lamaka SV, Knornschild G, Snihirova DV, Taryba MG, Zheludkevich ML, Ferreira MGS (2009) Electrochim Acta 55:131–141

    Article  CAS  Google Scholar 

  60. Hu J, Li Q, Zhong X, Zhang L, Chen B (2009) Prog Org Coat 66:199–205

    Article  CAS  Google Scholar 

  61. Zhang J, Wu C (2009) Prog Org Coat 66:387–392

    Article  CAS  Google Scholar 

  62. Trueba M, Trasatti SP (2009) Prog Org Coat 66:254–264

    Article  CAS  Google Scholar 

  63. Shi H, Liu F, Han E (2009) Prog Org Coat 66:183–191

    Article  CAS  Google Scholar 

  64. Varma R, Duffy B, Cassidy J (2009) Surf Coat Technol 204:277–284

    Article  CAS  Google Scholar 

  65. Batana A, Brusciotti F, De Graeve I, Vereecken J, Wenkin M, Piens M (2010) Prog Org Coat 69:126–132

    Article  Google Scholar 

  66. Scott AF, Gray-Munro JE, Shepherd JL (2010) J Colloid Interface Sci 343:474–483

    Article  CAS  Google Scholar 

  67. Pinto R, Carmezim MJ, Ferreira MGS, Montemor MF (2010) Prog Org Coat 69:143–149

    Article  CAS  Google Scholar 

  68. Zhong X, Li Q, Hu J, Zhang S, Chen B, Xu S, Luo F (2010) Electrochim Acta 55:2424–2429

    Article  CAS  Google Scholar 

  69. Barranco V, Carmona N, Galvan JC, Grobelny M, Kwiatkowski L, Villegas MA (2010) Prog Org Coat 68:347–355

    Article  CAS  Google Scholar 

  70. Rosero-Navarro NC, Paussa L, Andreatta F, Castro Y, Duran A, Aparicio M, Fedrizzi L (2010) Prog Org Coat 69:167–174

    Article  CAS  Google Scholar 

  71. Alvarez P, Collazo A, Covelo A, Novoa XR, Perez C (2010) Prog Org Coat 69:175–183

    Article  CAS  Google Scholar 

  72. Wang H, Akid R, Gobara M (2010) Corros Sci 52:2565–2570

    Article  CAS  Google Scholar 

  73. Meiffren V, Dumont K, Lenormand P, Ansart F, Manov S (2011) Prog Org Coat 71:329–335

    Article  CAS  Google Scholar 

  74. Chakraborty Banerjeea P, Singh Ramana RK (2011) Electrochim Acta 56:3790–3798

    Article  Google Scholar 

  75. Chen M-A, Lu X-B, Guo Z-H, Huang R (2011) Corros Sci 53:2793–2802

    Article  CAS  Google Scholar 

  76. Olivier MG, Fedel M, Sciamanna V, Vandermiers C, Motte C, Poelman M, Deflorian F (2011) Prog Org Coat 72:15–20

    Article  CAS  Google Scholar 

  77. Andreatta F, Paussa L, Lanzutti A, Rosero Navarro NC, Aparicio M, Castro Y, Duran A, Ondratschek D, Fedrizzi L (2011) Prog Org Coat 72:3–14

    Article  CAS  Google Scholar 

  78. Zandi Zand R, Verbeken K, Adriaens A (2011) Prog Org Coat 72:709–715

    Article  CAS  Google Scholar 

  79. Gonzalez E, Pavez J, Azocar I, Zagal JH, Zhou X, Melo F, Thompson GE, Paez MA (2011) Electrochim Acta 56:7586–7595

    Article  CAS  Google Scholar 

  80. Correa PS, Malfatti CF, Azambuja DS (2011) Prog Org Coat 72:739–747

    Article  CAS  Google Scholar 

  81. Collazo A, Hernandez M, Novo XR, Perez C (2011) Electrochim Acta 56:7805–7814

    Article  CAS  Google Scholar 

  82. Rosero-Navarro NC, Curioni M, Castro Y, Aparicio M, Thompson GE, Duran A (2011) Surf Coat Technol 206:257–264

    Article  CAS  Google Scholar 

  83. Jerman I, Surca Vuk A, Kozelj M, Svegl F, Orel B (2011) Prog Org Coat 72:334–342

    Article  CAS  Google Scholar 

  84. Kozhukharov S, Kozhukharov V, Schem M, Aslan M, Wittmar M, Wittmar A, Veith M (2012) Prog Org Coat 73:95–103

    Article  CAS  Google Scholar 

  85. Min J, Park JH, Sohn HK, Park JM (2012) J Ind Eng Chem 18:655–660

    Article  CAS  Google Scholar 

  86. Joncoux-Chabrol K, Bonino JP, Gressier M, Menu MJ, Pebere N (2012) Surf Coat Technol 206:2884–2891

    Article  CAS  Google Scholar 

  87. Motte C, Poelman M, Roobroeck A, Fedel M, Deflorian F, Olivier MG (2012) Prog Org Coat 74:326–333

    Article  CAS  Google Scholar 

  88. Collazo A, Covelo A, Novoa XR, Perez C (2012) Prog Org Coat 74:334–342

    Article  CAS  Google Scholar 

  89. Yang L, Seth A, Simhadri N, Van Ooij WJ (2005) In: 5th international symposium on silanes and other coupling agents, Toronto, Canada

  90. Yang L (2005) Corrosion inhibitor system for superprimer coatings on aerospace alloy. MSc Dissertation, University of Cincinnati

  91. Shivane C (2006) Environment-friendly anti-corrosion ‘superprimers’ for HDG. MSc Dissertation, University of Cincinnati

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anagha Sabnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balgude, D., Sabnis, A. Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys. J Sol-Gel Sci Technol 64, 124–134 (2012). https://doi.org/10.1007/s10971-012-2838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2838-z

Keywords

Navigation