Skip to main content
Log in

Influence of sol–gel derived lithium cobalt phosphate in alkaline rechargeable battery

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A lithium cobalt phosphate (LiCoPO4) cathode was synthesised by citric acid assisted sol–gel method and its electrochemical behaviour in alkaline secondary battery (using novel lithium hydroxide as the electrolyte) is reported. The sol–gel method using metal acetate precursors with citric acid as a chelating agent influenced the particle size and the homogeneity while yielding a single phase LiCoPO4 at a considerably lower temperature and shortened heating time, compared to that of the conventional solid state reaction. The cyclic voltammogram of LiCoPO4 showed a reversible redox process implying that de-intercalation and intercalation of lithium can occur in aqueous electrolyte. This was supported by X-ray diffraction (XRD) and Infra-red (IR) studies. The charge–discharge performance of the Zn/LiCoPO4 battery showed good capacity retention (after 25 cycles it delivered 90 % of its initial capacity). This enhanced capacity retention was attributed to the synergistic effect of particle homogeneity, reduced Li+ diffusion path and stability of the non-reactive aqueous electrolyte between the electrode and the electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid State Lett 7:A30–A32

    Article  CAS  Google Scholar 

  3. Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) J Power Sour 145:74–81

    Article  CAS  Google Scholar 

  4. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Chem Mater 19:908–915

    Article  CAS  Google Scholar 

  5. Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2003) J Solid State Electrochem 8:558–564

    Google Scholar 

  6. Doan TNL, Taniguchi I (2011) J Power Sour 196:5679–5684

    Article  CAS  Google Scholar 

  7. Satya Kishore MVVM, Varadaraju UV (2005) Mater Res Bull 40:1705–1712

    Google Scholar 

  8. Chen Z-Y, Zhu H-L, Ji S, Fakir R, Linkov V (2008) Solid State Ionics 179:1810–1815

    Article  CAS  Google Scholar 

  9. Wang F, Yang J, NuLi Y, Wang J (2009) J Power Sour 196:4806–4810

    Article  Google Scholar 

  10. Chung SY, Bloking JT, Chiang Y-M (2002) Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  11. Zhong S-K, Chen W, Li Y-H, Zou Z-G, Liu C-J (2010) Trans Nonferrous Met Soc China 20:s275–s278

    Article  CAS  Google Scholar 

  12. Li W, Dahn JR, Wainwright DS (1994) Science 264:1115–1118

    Article  CAS  Google Scholar 

  13. Beck F, Ruetschi P (2000) Electrochim Acta 45:2467–2482

    Article  CAS  Google Scholar 

  14. Minakshi M (2010) Electrochim Acta 55:9174–9178

    Article  CAS  Google Scholar 

  15. Minakshi M, Singh P, Sharma N, Blackford M, Ionescu M (2011) Ind Eng Chem Res 50:1899

    Article  CAS  Google Scholar 

  16. Sathiyaraj K, Babu G, Bhuvaneswari D, Kalaiselvi N (2011) Ionics 17:49–59

    Article  CAS  Google Scholar 

  17. Wang J, Liu X-M, Yang H, Shen X-D (2011) J Alloys Compd 509:712–718

    Article  CAS  Google Scholar 

  18. Hsu K-F, Tsay S-Y, Hwang B-J (2004) J Mater Chem 14:2690–2695

    Article  CAS  Google Scholar 

  19. Yang J, Xu J (2006) J Electrochem Soc 153:A716–A723

    Article  CAS  Google Scholar 

  20. Minakshi M (2010) Electrochem Solid State Lett 3:A125–A127

    Article  Google Scholar 

  21. Gangulibabu D, Bhuvaneswari N, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) J Sol-Gel Sci Technol 49:137–144

    Article  CAS  Google Scholar 

  22. Poovizhi PN, Selladurai S (2011) Ionics 17:13–19

    Article  CAS  Google Scholar 

  23. Minakshi M, Sharma N, Ralph D, Appadoo D, Nallathamby K (2011) Electrochem Solid State Lett 14:A86–A89

    Article  CAS  Google Scholar 

  24. Koleva V, Zhecheva E, Stoyanova R (2010) Eur J Inorg Chem 26:4091–4099

    Article  Google Scholar 

  25. Burba CM, Frech R (2004) J Electrochem Soc 151:A1032–A1038

    Article  CAS  Google Scholar 

  26. Ehrenberg H, Bramnik NN, Senyshyn A, Fuess H (2009) Solid State Sci 11:18–23

    Article  CAS  Google Scholar 

  27. Osorio-Guillén JM, Holm B, Ahuja R, Johansson B (2004) Solid State Ionics 167:221–227

    Article  Google Scholar 

Download references

Acknowledgments

The author (M. M) wishes to acknowledge the Australian Research Council (ARC). This research was supported under ARC’s Discovery Projects funding scheme (DP1092543) and from the Australian Synchrotron Company Limited through the grant no AS103/HRIR3003. The views expressed herein are those of the authors and are not necessarily those of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Minakshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minakshi, M., Kandhasamy, S. Influence of sol–gel derived lithium cobalt phosphate in alkaline rechargeable battery. J Sol-Gel Sci Technol 64, 47–53 (2012). https://doi.org/10.1007/s10971-012-2826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2826-3

Keywords

Navigation