Journal of Sol-Gel Science and Technology

, Volume 64, Issue 1, pp 47–53 | Cite as

Influence of sol–gel derived lithium cobalt phosphate in alkaline rechargeable battery

  • Manickam Minakshi
  • Sathiyaraj Kandhasamy
Original Paper


A lithium cobalt phosphate (LiCoPO4) cathode was synthesised by citric acid assisted sol–gel method and its electrochemical behaviour in alkaline secondary battery (using novel lithium hydroxide as the electrolyte) is reported. The sol–gel method using metal acetate precursors with citric acid as a chelating agent influenced the particle size and the homogeneity while yielding a single phase LiCoPO4 at a considerably lower temperature and shortened heating time, compared to that of the conventional solid state reaction. The cyclic voltammogram of LiCoPO4 showed a reversible redox process implying that de-intercalation and intercalation of lithium can occur in aqueous electrolyte. This was supported by X-ray diffraction (XRD) and Infra-red (IR) studies. The charge–discharge performance of the Zn/LiCoPO4 battery showed good capacity retention (after 25 cycles it delivered 90 % of its initial capacity). This enhanced capacity retention was attributed to the synergistic effect of particle homogeneity, reduced Li+ diffusion path and stability of the non-reactive aqueous electrolyte between the electrode and the electrolyte interface.


LiCoPO4 Sol–gel synthesis Aqueous electrolyte Battery 



The author (M. M) wishes to acknowledge the Australian Research Council (ARC). This research was supported under ARC’s Discovery Projects funding scheme (DP1092543) and from the Australian Synchrotron Company Limited through the grant no AS103/HRIR3003. The views expressed herein are those of the authors and are not necessarily those of the Australian Research Council.


  1. 1.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  2. 2.
    Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid State Lett 7:A30–A32CrossRefGoogle Scholar
  3. 3.
    Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) J Power Sour 145:74–81CrossRefGoogle Scholar
  4. 4.
    Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Chem Mater 19:908–915CrossRefGoogle Scholar
  5. 5.
    Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2003) J Solid State Electrochem 8:558–564Google Scholar
  6. 6.
    Doan TNL, Taniguchi I (2011) J Power Sour 196:5679–5684CrossRefGoogle Scholar
  7. 7.
    Satya Kishore MVVM, Varadaraju UV (2005) Mater Res Bull 40:1705–1712Google Scholar
  8. 8.
    Chen Z-Y, Zhu H-L, Ji S, Fakir R, Linkov V (2008) Solid State Ionics 179:1810–1815CrossRefGoogle Scholar
  9. 9.
    Wang F, Yang J, NuLi Y, Wang J (2009) J Power Sour 196:4806–4810CrossRefGoogle Scholar
  10. 10.
    Chung SY, Bloking JT, Chiang Y-M (2002) Nat Mater 1:123–128CrossRefGoogle Scholar
  11. 11.
    Zhong S-K, Chen W, Li Y-H, Zou Z-G, Liu C-J (2010) Trans Nonferrous Met Soc China 20:s275–s278CrossRefGoogle Scholar
  12. 12.
    Li W, Dahn JR, Wainwright DS (1994) Science 264:1115–1118CrossRefGoogle Scholar
  13. 13.
    Beck F, Ruetschi P (2000) Electrochim Acta 45:2467–2482CrossRefGoogle Scholar
  14. 14.
    Minakshi M (2010) Electrochim Acta 55:9174–9178CrossRefGoogle Scholar
  15. 15.
    Minakshi M, Singh P, Sharma N, Blackford M, Ionescu M (2011) Ind Eng Chem Res 50:1899CrossRefGoogle Scholar
  16. 16.
    Sathiyaraj K, Babu G, Bhuvaneswari D, Kalaiselvi N (2011) Ionics 17:49–59CrossRefGoogle Scholar
  17. 17.
    Wang J, Liu X-M, Yang H, Shen X-D (2011) J Alloys Compd 509:712–718CrossRefGoogle Scholar
  18. 18.
    Hsu K-F, Tsay S-Y, Hwang B-J (2004) J Mater Chem 14:2690–2695CrossRefGoogle Scholar
  19. 19.
    Yang J, Xu J (2006) J Electrochem Soc 153:A716–A723CrossRefGoogle Scholar
  20. 20.
    Minakshi M (2010) Electrochem Solid State Lett 3:A125–A127CrossRefGoogle Scholar
  21. 21.
    Gangulibabu D, Bhuvaneswari N, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) J Sol-Gel Sci Technol 49:137–144CrossRefGoogle Scholar
  22. 22.
    Poovizhi PN, Selladurai S (2011) Ionics 17:13–19CrossRefGoogle Scholar
  23. 23.
    Minakshi M, Sharma N, Ralph D, Appadoo D, Nallathamby K (2011) Electrochem Solid State Lett 14:A86–A89CrossRefGoogle Scholar
  24. 24.
    Koleva V, Zhecheva E, Stoyanova R (2010) Eur J Inorg Chem 26:4091–4099CrossRefGoogle Scholar
  25. 25.
    Burba CM, Frech R (2004) J Electrochem Soc 151:A1032–A1038CrossRefGoogle Scholar
  26. 26.
    Ehrenberg H, Bramnik NN, Senyshyn A, Fuess H (2009) Solid State Sci 11:18–23CrossRefGoogle Scholar
  27. 27.
    Osorio-Guillén JM, Holm B, Ahuja R, Johansson B (2004) Solid State Ionics 167:221–227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Chemical and Mathematical SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations