Advertisement

Journal of Sol-Gel Science and Technology

, Volume 63, Issue 3, pp 495–500 | Cite as

In situ sol–gel preparation of high transparent fluorinated polyimide/nano-MgO hybrid films

  • Junwen Lu
  • Wei Wang
  • Aiqing Zhang
  • Fatang Tan
  • Xueliang Qiao
Original Paper
  • 382 Downloads

Abstract

Hybrid nanocomposite films of magnesium oxide (MgO) in fluorinated polyimide (PI) from 4, 4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 4, 4′-Diaminodiphenyl ether (ODA) have been successfully fabricated via an in situ sol–gel polymerization technique. The MgO content in hybrid films was varied from 0 to 5 wt%. The hybrid films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet–visible (UV–Vis) spectroscopy and thermal gravimetric analyses (TGA). The results of FTIR, XRD and FESEM showed that the MgO nanoparticles were well dispersed in the polymer matrix due to the coordination between the carbonyl group of polymers and Mg atom, and the as-prepared hybrid films exhibited excellent optical transparency in the visible region and good UV-shielding properties in the UV region. Although the thermal stability of the hybrid films is slight inferior to pure PI, it is still good for the practical application below the temperature of 300 °C.

Keywords

Polyimides MgO Nanocomposites In situ sol–gel 

Notes

Acknowledgments

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No. 50902054), the Fundamental Research Funds for the Central Universities (No. 2012QN043), and the Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities (No. CHCL09005). The authors also acknowledge the experimental help from Huazhong University of Science & Technology Analytical and Testing Center.

References

  1. 1.
    Wang YW, Chen WC (2010) Compos Sci Technol 70:769–775CrossRefGoogle Scholar
  2. 2.
    Liu D, Geng L, Fu Y, Dai X, Qi B, Lu C (2010) Polym Int 59:1578–1585CrossRefGoogle Scholar
  3. 3.
    Qu L, Lin Y, Hill DE, Zhou B, Wang W, Sun X, Kitaygorodskiy A, Suarez M, Connell JW, Allard LF (2004) Macromolec 37:6055–6060CrossRefGoogle Scholar
  4. 4.
    Huang W, Wang C, Yang J, Zou B, Meng X, Wang Y, Cao X, Wang Z (2012) J Sol-Gel Sci Technol 61:213–223CrossRefGoogle Scholar
  5. 5.
    Chen CJ, Lu HT, Tseng WY, Tseng I (2011) J Appl Polym Sci 122:648–656CrossRefGoogle Scholar
  6. 6.
    Sullivan LM, Lukehart CM (2005) Chem Mater 17:2136–2141CrossRefGoogle Scholar
  7. 7.
    Pandey S, Mishra SB (2011) J Sol-Gel Sci Technol 59:73–94CrossRefGoogle Scholar
  8. 8.
    Yu YY, Chien WC, Tsai TW (2010) Polym Test 29:33–40CrossRefGoogle Scholar
  9. 9.
    Duo S, Li M, Zhu M, Zhou Y (2006) Surf Coat Tech 200:6671–6677CrossRefGoogle Scholar
  10. 10.
    Srisuwan S, Thongyai S, Praserthdam P (2010) J Appl Polym Sci 117:2422–2427Google Scholar
  11. 11.
    Tsai MH, Lin YK, Chang CJ, Chiang PC, Yeh JM, Chiu WM, Huang SL, Ni SC (2009) Thin Solid Films 517:5333–5337CrossRefGoogle Scholar
  12. 12.
    Zhang LD, Mou JM (2001) Nano-materials and nano-structure. Science Press, BeijingGoogle Scholar
  13. 13.
    Jeevanandam P, Klabunde KJ (2002) Langmuir 18:5309–5313CrossRefGoogle Scholar
  14. 14.
    Bhargava A, Alarco JA, Mackinnon IDR, Page D, Ilyushechkin A (1998) Mater Lett 34:133–142CrossRefGoogle Scholar
  15. 15.
    Li Q, Wang L, Wang H, Lu R, Liu T (2006) Chn J Appl Chem 23:1145–1149Google Scholar
  16. 16.
    Murakami K, Ando S (2010) J Photopolym Sci Tech 23:501–506CrossRefGoogle Scholar
  17. 17.
    Wang W, Qiao X, Chen J (2008) J Am Ceram Soc 91:1697–1699CrossRefGoogle Scholar
  18. 18.
    Kim JY, Jung HS, Hong KS (2005) J Am Ceram Soc 88:784–787CrossRefGoogle Scholar
  19. 19.
    Tyan HL, Liu YC (1999) Polymer 40:4877–4886CrossRefGoogle Scholar
  20. 20.
    Jin X, Zhu D (2008) Eur Polym J 44:3571–3577CrossRefGoogle Scholar
  21. 21.
    Chen-Yang Y, Yang H, Li G, Li Y (2005) J Polym Res 11:275–283CrossRefGoogle Scholar
  22. 22.
    Shi X, Zhu G, Wang X, Li G, Fang Q, Zhao X et al (2005) Cryst Growth Des 5:341–346CrossRefGoogle Scholar
  23. 23.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B, Chap 1, 6th edn. Wiley, New York, pp 65–66Google Scholar
  24. 24.
    Wahab MA, Kim I, Ha CS (2003) Polymer 44:4705–4713CrossRefGoogle Scholar
  25. 25.
    Shang X, Zhu Z, Yin J, Ma X (2002) Chem Mat 14:71–77CrossRefGoogle Scholar
  26. 26.
    Liu L, Weng L, Song Y, Gao L, Zhao H, Lei Q (2011) Pigm Resin Technol 40:222–228CrossRefGoogle Scholar
  27. 27.
    Boggess RK, Taylor LT (1987) J Polym Sci, Part A: Polym Chem 25:685–702CrossRefGoogle Scholar
  28. 28.
    Noack V, Eychmüller A (2002) Chem Mater 14:1411–1417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Junwen Lu
    • 1
  • Wei Wang
    • 1
  • Aiqing Zhang
    • 2
  • Fatang Tan
    • 1
  • Xueliang Qiao
    • 1
  1. 1.State Key Laboratory of Material Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of EducationSouth-Central University for NationalitiesWuhanPeople’s Republic of China

Personalised recommendations