Journal of Sol-Gel Science and Technology

, Volume 62, Issue 3, pp 424–431 | Cite as

Superhydrophobic surface by immobilization of polystyrene on vinyl-modified titania nanoparticles

  • W. L. Liu
  • L. Wang
  • L. D. Zhang
  • W. H. Xu
  • S. H. Chen
  • X. Q. Wang
  • X. L. Duan
Original Paper


The organic–inorganic nanocomposite films were fabricated by grafting polystyrene (PS) onto the vinyltriethoxysilane (VTEOS) modified titanium dioxide nanopowders using free radical polymerization. The composition of the surfaces and the structure for the PS grafted titania (PS-g-TiO2) were examined by infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis, and the rough surface was confirmed by the evaluation of the morphological characteristics of the coating using hybrid particles. The wetting properties of the VTEOS modified titania and PS-g-TiO2 films were investigated, which show the maximum static water contact angles of 160° and 154°, and minimum sliding angles of 3° and 4°, respectively.

Graphical Abstract


Superhydrophobic Titanium dioxide nanoparticles Vinyltriethoxysilane Polystyrene Grafting 



This work is supported by the Scientific Research Foundation for the Returned Overseas Scholars in Jinan (20100406), the Youth Scientist Fund of Shandong Province (BS2011CL025), the Doctoral Startup Foundation of Shandong Polytechnic University, National Natural Science Foundation of China (50902089 and 51172132), the Independent Innovation Foundation of Shandong University (IIFSDU, No. 2009JC012), and Shandong Province Natural Science Foundation (ZR2010EM020).


  1. 1.
    Ichimura K, Oh SK, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288:1624–1626CrossRefGoogle Scholar
  2. 2.
    Nakajima A, Hashimoto K, Watanabe T (2001) Recent studies on super-hydrophobic films. Monatsh Chem 132:31–41Google Scholar
  3. 3.
    Guo ZG, Liu WM, Su BL (2011) Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interf Sci 353:335–355CrossRefGoogle Scholar
  4. 4.
    Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu DB (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860CrossRefGoogle Scholar
  5. 5.
    Gao XF, Yao X, Jiang L (2007) Effects of rugged nanoprotrusions on the surface hydrophobicity and water adhesion of anisotropic micropatterns. Langmuir 23:4886–4891CrossRefGoogle Scholar
  6. 6.
    Liu H, Zhai J, Jiang L (2006) Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter 2:811–821CrossRefGoogle Scholar
  7. 7.
    Aussillous P, Quéré D (2001) Liquid marbles. Nature 411:924–927CrossRefGoogle Scholar
  8. 8.
    Quéré D, Ajdari A (2006) Liquid drops: surfing the hot spot. Nat Mater 5:429–430CrossRefGoogle Scholar
  9. 9.
    Balaur E, Macak JM, Tsuchiya H, Schmuki P (2005) Wetting behaviour of layers of TiO2 nanotubes with different diameters. J Mater Chem 15:4488–4491CrossRefGoogle Scholar
  10. 10.
    Guo ZG, Fang J, Hao JC, Liang YM, Liu WM (2006) A novel approach to stable superhydrophobic surfaces. Chem Phys Chem 7:1674–1677CrossRefGoogle Scholar
  11. 11.
    Guo ZG, Zhou F, Hao JC, Liu WM (2005) Stable biomimetic superhydrophobic engineering materials. J Am Chem Soc 127:15670–15671CrossRefGoogle Scholar
  12. 12.
    Hou W, Wang Q (2007) Wetting behavior of a SiO2—polystyrene nanocomposite surface. J Colloid Interf Sci 316:206–209CrossRefGoogle Scholar
  13. 13.
    Tian D, Chu XH, Yu DH, Yue YZ, Zhao P, Sun XL, Liu WL (2011) Immobilization of polymethyl methacrylate brushes on hydroxyapatite under molecular weight control. Ind Eng Chem Res 50:6109–6114CrossRefGoogle Scholar
  14. 14.
    Liu P, Su Z (2004) Preparation of polystyrene grafted silica nanoparticles by two-steps UV induced reaction. J Photochem Photobiol, A 167:237–240CrossRefGoogle Scholar
  15. 15.
    Agudelo NA, Perez LD, Lopez BL (2011) A novel method for the synthesis of polystyrene—graft—silica particles using random copolymers based on styrene and triethoxyvinylsilane. Appl Surf Sci 257:8581–8586CrossRefGoogle Scholar
  16. 16.
    Maas JH, Cohen Stuart MA, Sieval AB, Zuilhof H, Sudhölter EJR (2003) Preparation of polystyrene brushes by reaction of terminal vinyl groups on silicon and silica surfaces. Thin Solid Films 426:135–139CrossRefGoogle Scholar
  17. 17.
    Xu XH, Zhang ZZ, Liu W (2009) Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene nanocomposites coating. Colloid Surf A 341:21–26CrossRefGoogle Scholar
  18. 18.
    Mahadik SA, Kavale MS, Mukherjee SK, Rao AV (2010) Transparent superhydrophobic silica coatings on glass by sol–gel method. Appl Surf Sci 257:333–339CrossRefGoogle Scholar
  19. 19.
    Lin JF, Wan ZC, Wei PJ, Chu HY, Ai CF (2004) Effect of nitrogen content on mechanical properties and tribological behaviors of hydrogenated amorphous carbon films prepared by ion beam assisted chemical vapor deposition. Thin Solid Films 466:137–150CrossRefGoogle Scholar
  20. 20.
    Que W, Hu X, Zhang QY (2003) Preparation and optical properties of patternable TiO2/ormosils hybrid films for photonics applications. Chem Phys Lett 369:354–360CrossRefGoogle Scholar
  21. 21.
    Shindou T, Katayama S, Katayama N, Kamiya K (2003) Surface properties of polydimethylsiloxane-based inorganic/organic hybrid films deposited on polyimide sheets by the sol–gel method. J Sol–Gel. Sci Technol 27:15–21Google Scholar
  22. 22.
    Mirabedini A, Mirabedini SM, Babalou AA, Pazokifard S (2011) Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2 nanocomposite in an aqueous solution and acrylic-based coatings. Prog Org Coat 72:453–460CrossRefGoogle Scholar
  23. 23.
    Milanesi F, Cappelletti G, Annunziata R, Bianchi CL, Meroni D, Ardizzone S (2010) Siloxane-TiO2 hybrid nanocomposites. The structure of the hydrophobic layer. J Phys Chem C 114:8287–8293CrossRefGoogle Scholar
  24. 24.
    Chen ZM, Pan SJ, Yin HJ, Zhang LL, Ou EC, Xiong YQ, Xu WJ (2011) Facile synthesis of superhydrophobic TiO2/polystyrene core-shell microspheres. EXPRESS Polymer Lett 5:38–46CrossRefGoogle Scholar
  25. 25.
    Lai Y, Lin C, Huang J, Zhuang H, Sun L, Nguyen T (2008) Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir 24:3867–3873CrossRefGoogle Scholar
  26. 26.
    Wang AF, Cao T, Tang HY, Liang XM, Black C, Sally SO, McAllister JP, Auner GW, Ng HYS (2006) Immobilization of polysaccharides on a fluorinated silicon surface. Colloid Surf B 47:57–63CrossRefGoogle Scholar
  27. 27.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy. Waltham, Perkin-ElmerGoogle Scholar
  28. 28.
    Xu B, Cai Z, Wang W, Ge F (2010) Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf Coat Tech 204:1556–1561CrossRefGoogle Scholar
  29. 29.
    Xue L, Li J, Fu J, Han Y (2009) Superhydrophobicity of silica nanoparticles modified with vinyl groups. Colloid Surf A 338:15–19CrossRefGoogle Scholar
  30. 30.
    Song H, Zhang Z (2008) Study on the tribological behaviors of the phenolic composite coating filled with modified nano-TiO2. Tribol Int 41:396–403CrossRefGoogle Scholar
  31. 31.
    Manca M, Cannavale A, Marco LD, Aricò AS, Cingolani R, Gigli G (2009) Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol–gel processing. Langmuir 25:6357–6362CrossRefGoogle Scholar
  32. 32.
    Gao XF, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432:36CrossRefGoogle Scholar
  33. 33.
    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRefGoogle Scholar
  34. 34.
    Choi W, Tuteja A, Mabry JM (2009) A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J Colloid Interf Sci 339:208–216CrossRefGoogle Scholar
  35. 35.
    Xia SX, Xie QD, Lu XY, Zhao N, Zhang XL, Xu J (2008) One step preparation of superhydrophobic polymeric surface with polystyrene under ambient atmosphere. J Colloid Interf Sci 322:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • W. L. Liu
    • 1
  • L. Wang
    • 1
  • L. D. Zhang
    • 1
  • W. H. Xu
    • 1
  • S. H. Chen
    • 1
  • X. Q. Wang
    • 2
  • X. L. Duan
    • 2
  1. 1.School of Materials Science and Engineering, Key Laboratory of Amorphous and Polycrystalline Materials, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong ProvinceShandong Polytechnic UniversityJinanPeople’s Republic of China
  2. 2.State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations