Skip to main content
Log in

Structural and optical characterization of Zn doped TiO2 nanoparticles prepared by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Undoped and zinc-doped TiO2 nanoparticles (Ti1−xZnxO2 where x = 0.00–0.10) were synthesized by a sol–gel method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–VIS spectrometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average grain size was determined from X-ray line broadening using the Debye–Scherrer relation. The crystallite size was varied from 10 to 40 nm as the calcination temperature was increased from 350 to 800 °C. The incorporation of 3–5 mol% Zn2+ in place of the Ti4+ provoked a slight decrease in the size of nanocrystals as compared to undoped TiO2. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology with a diameter of about 10–30 nm and length of several nanometers, which is in agreement with XRD results. Optical absorption measurements indicated a blue shift in the absorption band edge upon 3–5 mol% zinc doping. Direct allowed band gap of undoped and Zn-doped TiO2 nanoparticles measured by UV–VIS spectrometer were 2.95 and 3.00 eV at 550 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cahn RW (1990) Nature 348:389

    Article  Google Scholar 

  2. Gleiter H (1995) Nanostruct Mater 6:3

    Article  CAS  Google Scholar 

  3. Mills A, Elliott N, Hill G, Fallis D, Durrant JR, Willis RL (2003) Photochm Photobiol Sci 2:591

    Article  CAS  Google Scholar 

  4. Zhao L, Yu Y, Song L, Hu X, Larbot A (2005) Appl Surf Sci 239:285

    Article  CAS  Google Scholar 

  5. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  6. Fujishima A, Rao TN, Tryk DA (2000) J Photochm Photobiol C 1:1

    Article  CAS  Google Scholar 

  7. Geuzens E, Vanhoyland G, D’Haen J, Van Bael MK, Van den Rul H, Mullens J, Van Poucke LC (2004) Key Eng Mater 264–268:343

    Article  Google Scholar 

  8. Wang C–C, Ying JY (1999) Chem Mater 11:3113

    Article  CAS  Google Scholar 

  9. Li B, Wang X, Yan M, Li L (2002) Mater Chem Phys 78:184

    Article  CAS  Google Scholar 

  10. Yang J, Mei S, Ferreira JMF (2004) J Eur Ceram Soc 24:335

    Article  CAS  Google Scholar 

  11. So WW, Park SB, Kim KJ, Moon SJ (1997) J Colloid Interface Sci 191:398

    Article  CAS  Google Scholar 

  12. Su C, Tseng CM, Chen LF, You BH, Hsu BC, Chen SS (2006) Thin Solid Films 498:259

    Article  CAS  Google Scholar 

  13. Yang J, Mei S, Ferreira JMF (2001) J Am Ceram Soc 84:1696

    Article  CAS  Google Scholar 

  14. Cheng H, Ma J, Zhao Z, Qi L (1995) Chem Mater 7:663

    Article  CAS  Google Scholar 

  15. Reddy KM, Guin D, Manorama SV, Reddy AR (2004) J Mater Res 19:2567

    Article  CAS  Google Scholar 

  16. Li ZJ, Hou B, Xu Y, Wu D, Sun YH (2005) Acta physicochim sin 21:229

    Google Scholar 

  17. Gopal M, Moberly Chan WJ, De Jonghe LC (1997) J Mater Sci 32:6001

    Article  CAS  Google Scholar 

  18. Kumer KNP, Keizer K, Burggraaf AJ, Okubo T, Nagamoto H, Morooka S (1992) Nature 358:48

    Article  Google Scholar 

  19. Golubovic A, Scepanovic M, Kremenovic A, Askrabic S, Berec V, Dohcevic-Mitrovic Z, Popovic ZV (2009) J Sol–Gel Sci Technol 49:311

    Article  CAS  Google Scholar 

  20. Liu AR, Wang SM, Zhao YR, Zheng Z (2006) Mater Chem Phys 99:131

    Article  CAS  Google Scholar 

  21. Sugimoto T, Zhou X, Muramatsu A (2003) J Colloid Interface Sci 259:43

    Article  CAS  Google Scholar 

  22. Zhang H, Banfield JF (2000) J Phys Chem B. B 104:3481

    CAS  Google Scholar 

  23. Wu M, Lin G, Chen D, Wang G, He D, Feng S, Xu R (2002) Chem Mater 14:1974

    Article  CAS  Google Scholar 

  24. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall, Inc., Upper Saddle River, NJ, p 619

    Google Scholar 

  25. Manifacier JC, De Murcia M, Fillard JP, Vicario E (1997) Thin Solid Films 41:127

    Article  Google Scholar 

  26. Pankove JI (1971) Optical process in semiconducters, Inc. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Sanjeev Aggrawal and Nidhi Sekhawat, Kurukshetra University, Kurukshetra for technical support for getting UV–VISspectra and National Physical Laboratory, New Delhi for getting SEM images. We are thankful to the Director, NIT, Kurukshetra for XRD and SEM facilities in physics department. Authors are also thankful to the reviewers of the manuscript, as the same have been improved only after their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashavani Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, R., Kumar, A. & Chaudhary, R.P. Structural and optical characterization of Zn doped TiO2 nanoparticles prepared by sol–gel method. J Sol-Gel Sci Technol 61, 585–591 (2012). https://doi.org/10.1007/s10971-011-2664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2664-8

Keywords

Navigation