Journal of Sol-Gel Science and Technology

, Volume 61, Issue 3, pp 570–576 | Cite as

Low temperature synthesis of nanosized ZnNb2O6 photocatalysts by a citrate complex method

  • Weiming Wu
  • Shijing Liang
  • Zhengxin Ding
  • Huarong Zheng
  • Ling Wu
Original Paper


Nanosized ZnNb2O6 photocatalysts (band gaps ~4.0 eV) were successfully synthesized via a citrate complex method. Their particle sizes ranged from 50 to 150 nm. The result of Mott–Schottky measurement revealed that the flat-band potential of ZnNb2O6 was ca. −1.3 V versus Ag/AgCl at pH 6.6. The photocatalytic activities of the samples for the degradation of methyl orange were evaluated under UV-light (λ = 254 nm). It was found that the sample obtained at 850 °C showed the highest photocatalytic activity due to its opportune crystallinity and surface area. Furthermore, ·OH radicals were detected as the major oxidation agents responsible for the decomposition of methyl orange.


ZnNb2O6 Nanoparticles Citrate complex method Photocatalysis 



This work was supported by NNSFC (21177024 and U1033603), 973 Program (2011CB612314) and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT0818).


  1. 1.
    Maeda M, Yamamura T, Ikeda T (1987) Jpn J Appl Phys Suppl 26-2:76Google Scholar
  2. 2.
    Lee HJ, Hong KS, Kim SJ (1997) Mater Res Bull 32:847CrossRefGoogle Scholar
  3. 3.
    Kudo A, Nakagawa S, Kato H (1999) Chem Lett 28:1197CrossRefGoogle Scholar
  4. 4.
    Beydoun D, Amal R, Low G, McEvoy S (1999) J Nanopart Res 1:439CrossRefGoogle Scholar
  5. 5.
    Deshpande VV, Patil MM, Navale SC, Ravi V (2005) Bull Mater Sci 28:205CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Qiu Z, Lu M, Ma Q, Zhang A, Zhou G, Zhang H, Yang H (2007) J Phys Chem C 111:10190CrossRefGoogle Scholar
  7. 7.
    Sanoj MA, Reshmi CP, Varma MR (2009) J Am Ceram Soc 92:2648CrossRefGoogle Scholar
  8. 8.
    Hsiao Y, Fang T, Ji L (2010) Mater Lett 64:2563CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Wang S, Zhou X, Fu B, Yue Z (2010) Key Eng Mater 434–435:221CrossRefGoogle Scholar
  10. 10.
    Narendar Y, Messing GL (1997) Chem Mater 9:580CrossRefGoogle Scholar
  11. 11.
    Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonietti M, Wang X (2010) Angew Chem Int Ed 49:441Google Scholar
  12. 12.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1CrossRefGoogle Scholar
  13. 13.
    Schober T, Szot K, Barton M, Kessler B, Breuer U, Penkalla HJ, Speier W (2000) J Solid State Chem 149:262CrossRefGoogle Scholar
  14. 14.
    Deng Z, Chen M, Gu G, Wu L (2008) J Phys Chem B 112:16CrossRefGoogle Scholar
  15. 15.
    Bi J, Wu L, Li J, Li Z, Wang X, Fu X (2007) Acta Mater 55:4699CrossRefGoogle Scholar
  16. 16.
    Kim DS, Kwak S (2007) Appl Catal A 323:110CrossRefGoogle Scholar
  17. 17.
    Wu W, Liang S, Wang X, Bi J, Liu P, Wu L (2011) J Solid State Chem 184:81CrossRefGoogle Scholar
  18. 18.
    Chen Y, Yang S, Wang K, Lou L (2005) J Photochem Photobiol A 172:47CrossRefGoogle Scholar
  19. 19.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  20. 20.
    Chen R, Bi J, Wu L, Wang W, Li Z, Fu X (2009) Inorg Chem 48:9072CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Weiming Wu
    • 1
  • Shijing Liang
    • 1
  • Zhengxin Ding
    • 1
  • Huarong Zheng
    • 1
  • Ling Wu
    • 1
  1. 1.State Key Laboratory Breeding Base of Photocatalysis, Research Institute of PhotocatalysisFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations